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Abstract:
The UAWorld project tries to introduce UAVs
into warehouse and factory environments by
the help of GamesOnTrack (GOT), an indoor
positioning system. Unfortunately drop-outs
and dead zones may occur in an indoor posi-
tioning systems. The purpose of this project
is to investigate whether a colour and depth
camera (RGB-D) can be used on a drone to
increase the safety when navigating indoor,
even at loss of GOT measurements.

The filtering-based FastSLAM 2.0 algorithm
is explored as a real-time SLAM position es-
timator using a combination of RGB-D mea-
surements and GOT measurements. ArUco
markers are placed in the environment as vi-
sual landmarks ensuring a static environment.
The FastSLAM estimator is used in conjunc-
tion with an Extended Kalman Filter (EKF)
to estimate a Full-State feedback for a set
of position controllers based on a state-space
model derived from an identified ARX model
of the drone.

The system is developed on the Intel Aero
Ready to Fly drone incorporating a PX4 flight
controller for attitude stabilization, given atti-
tude and thrust set-points by the position con-
trollers. The Robot Operating System (ROS)
is used for both development and test of the
FastSLAM estimator, EKF and position con-
trollers.

The results illustrates how the camera-based
system is indeed able to estimate the position
of a drone, such that the position can either be
held still or the drone can continue its’ motion,
even at loss of GOT measurements.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.



Preface

This project contains the development of an autonomous navigation solution for drones in
GPS-denied indoor environments using an RGB-D camera and is a part of the UAWorld research
project. The project is based on multivariable control theory, non-linear state estimation and the
Simultaneous Location and Mapping (SLAM) problem.

A general understanding of probability theory and statistics is expected of the reader, however
common estimation theory and methods used throughout the report can be found within Ap-
pendix E. Any specific concepts not familiar to a general reader from a degree within Control &
Automation is described, both with respect to the functionality, choices and decisions.

The report is written with separate chapters, each covering a main part of the entire project.

Chapter 1 gives an introduction to the UAWorld project and the problem of which this project
is concerned. The introduction is leading to the problem formulation which is the main
question dealt with in the project.

Chapter 2 contains an initial analysis of the necessity of position feedback on drones and
furthermore gives a description of the environment and the GOT position sensors installed
in the environment. Furthermore the chapter introduces the SLAM problem to the reader.

Chapter 3 contains an analysis of different vision based solutions for Simultaneous Location
and Mapping and results in a choice of algorithm.

Chapter 4 presents the Intel Aero Ready to Fly drone platform used in the project.

Chapter 5 gives an overview of the proposed solution and system, describing each element of
the system to be developed. The chapter results in a system diagram and implementation
overview.

Chapter 6 describes the design, implementation and test of the position controllers on the
drone, including a z controller and an x-y controller.

Chapter 7 describes the FastSLAM 2.0 algorithm chosen to solve the SLAM problem and
estimate the position of the drone. Motion and measurement models are put up for the
RGB-D camera and the GOT positining system and the chapter results in a test of the
algorithm using measurements from the drone.

Chapter 8 describes the design, implementation and test of the Extended Kalman Filter used
for Full-State estimation for the position controllers.

Chapter 9 concludes on the results of the project and concludes on the problem formulation.

Chapter 10 describes the parts of the project which is left for future development to improve
the system.

The group would like to thank the group supervisor Henrik Schiøler for his guidance and sugges-
tions of possible solutions and methods.



Material relevant for the project but not included within this report, e.g. source code, measurement
data, guides etc. can be found on the GitHub repository maintained by the project group [1].
The repository mainly contains the source code for the ROS implementation of the system but
also MATLAB scripts for the controller development and links to measurement data can be
found. To test the code, the guide found in Appendix K describes how to set up the necessary
ROS and Gazebo simulation environment, including the PX4 Software in the loop simulator.

Table of Notation
The common notations used throughout the report is shown in Table 1.

c Scalar (small letter)
s Vector (bold small letter)
M Matrix (bold capital letter)
03×4 Zero matrix of 3 rows and 4 colums
I3 Identity matrix of size 3
sGOT Text or symbol based subscripts denoting specific types of a

variable
z Backward shift operator within discrete z-transform
p(X) Probability density functions
p(X, Y ) Joint probability density functions
p(X | Y ) Conditional probability density functions
E[X] Expectation
X ∼ (µ, σ2) undefined probability distribution with mean µ and covariance

σ2

X ∼ N
(
µ, σ2

)
Symbol in front of parentheses indicates type of distribution.
E.g. N : Normal distribution.

µ = E[X] Scalar Mean
σ2 = Var(X) Variance
x̄ = E[X, Y ] Vectorial Mean
Σ = Cov (X, Y ) Covariance
x̂ Estimate
xk+1 Time instance k + 1 of a time varying variable
Hk,T Transposed matrix of a time varying matrix at time instance

k
A
BR ∈ R3×3 SO(3) rotation matrix from frame B to frame A
A
BT ∈ R4×4 SE(3) transformation from frame B to frame A
Av Variable described in frame A
[· · · ] Array
{· · · } Set((((· · · ))))

 Multi-level parenthesis

s[p] Particle indexing
s[p],i Iterated single particle

Table 1: Table of the nomenclature used in the report.
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1 Introduction

Small multi-rotor unmanned aerial vehicles, loosely referred to as drones in the following, are
being recommended for an increasing number of missions and use-cases due to their flexibility,
customizability and capability of rapid movements. Unfortunately, drones are highly dependent
on position feedback to stabilize their position, as it is inherently unstable due to the uncertainties
involved in estimating the exact attitude of the drone, where attitude refers to the roll, pitch
and yaw angles.

Most of the drones currently available on the market include a GPS sensor to allow outdoor
positioning and trajectory following. For use-cases in GPS-denied environments such as indoor,
the drone options are still limited though. Current options based on LiDAR technology allow
some commercial drones to navigate autonomously indoor [2], though LiDAR technology is still
very expensive and heavy to use on smaller and versatile drones.

GamesOnTrack, a Danish company making indoor positioning systems based on ultrasound and
radio communication, can provide a decent indoor position estimate with approximately 10 mm
resolution and could thus be a solution in GPS-denied environments. Unfortunately, both the
GamesOnTrack system (GOT) and the outdoor GPS system suffer from dead zones in where
position measurements are unavailable. The GPS system dead zones are usually due to poor
atmospheric conditions, bad antenna placement, multi-path effects (Canyon effect), tree cover or
interference, while the dead zones within GOT are usually due to loss of sight or loss of radio
contact.

Figure 1.1: UAWorld concept illustration [3]

The UAWorld project [3] [4] tries to introduce UAS into warehouses and factory environments
with the help of GOT [5], but due to the uncertainties within the positioning the project has not
yet been approved by the Danish authorities to be used in a work environment where humans
are present. This significantly reduces the usability of drones in these environments, so to ensure
that drones can manoeuvre safely even in the presence of GOT dead zones, an enhancement to
the solution proposed by UAWorld has to be found.

1 / 172



Chapter 1. Introduction

One approach to increase the safety of drones within the UAWorld project is to use additional
on-board sensors to perceive the environment in such a way that distinct features can be identified
and used for position estimation, allowing the drone to manoeuvre safely through a dead zone
until position measurements from GOT become available again. Such sensors could e.g. be
LiDARs or cameras with real-time video/image processing. As mentioned, LiDAR technology is
expensive and heavy, which makes cameras a favourable choice for usage on a drone, since this
kind of sensors are usually cheap and lightweight.

This leads to the following problem formulation which is the research topic of this project:

"Is it possible to make the UAWorld drones safer by overcoming the dead zone problem of the
GamesOnTrack system by incorporating a color and/or depth camera and real-time image

processing on a drone."?
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2 Problem analysis

Drones are notoriously unstable and require a constant position feedback to stay put. In this
chapter, the problem formulation presented in Chapter 1 is investigated and a description of
why it is necessary to provide position feedback to stabilize a drone is given. The purpose of
this project is to increase the safety of the UAWorld drones by incorporating a combination
of position measurements from a GOT system and measurements from a colour and/or depth
camera mounted on the drone. An analysis of the environment in which the UAWorld drones are
navigating and an analysis of the existing GOT system are made, such that a proper decision on
how to use measurements from a color and/or depth cameras can be taken.
The analysis is concluded with an explanation of the SLAM problem which is inevitable to
the UAWorld drones when GOT measurements are unavailable and only measurements from
on-board sensors can be used, hereby leading up to the analysis of present SLAM methods in
Chapter 3.

2.1 Inevitable position feedback with drones
Attitude stabilized drones, being the focus of this project, are usually stabilized with the help
of 3-dimensional accelerometers, measuring the proper acceleration, gyroscopes, measuring the
angular velocity, and magnetometers, measuring the direction of a magnetic field, eg. the one
generated by the Earth.

Bx

Bz

By

Ex

Ez
Ey

Figure 2.1: Drone coordinate frame with axis and angles

Stabilizing the attitude of a drone requires that the roll (φ), pitch (θ) and yaw (ψ) angles, see
Section A.1, are controllable and close to hover at all times. At hover the roll and pitch axis align
with the inertial frame of the world which allows the thrust vectors generated by the propellers
to compensate exactly for the gravity force affecting the drone without causing any movement of
the drone. As a result, this will affix the position of the drone, defined as position hold. Even
the slightest tilt away from this alignment will cause the drone to accelerate in a given direction.
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Chapter 2. Problem analysis

This is seen by (2.1) which describes a simplified model of the acceleration of the drone within a
heading frame, being a frame that is aligned with the heading of the drone but does not tilt, as
explained in Section A.2. [

Hẍ
Hÿ

]
= g

[
θ
−φ

]
(2.1)

Where:
Hẍ is the linear acceleration in the x-coordinate of the heading

frame
Hÿ is the linear acceleration in the y-coordinate of the heading

frame
g is the gravity of Earth
φ is the rotation around the x-axis of the earth frame
θ is the rotation around the y-axis of the earth frame

The yaw angle is related to the heading of the drone which can be extracted from the direction
of the magnetic field measured by the magnetometer.

Unfortunately neither the roll or pitch angle are directly measurable from any of the sensors
normally mounted on a drone, and would thus need to be estimated. The angular velocities
from the gyroscopes can be integrated to give a dead-reckoning-based estimate of the roll and
pitch angle, if one assumes that the integration is started when the drone is in exact hover.
Unfortunately, such estimates drift over time which would cause the drone to accelerate in an
arbitrary direction if these estimates were used solely to stabilize the attitude of the drone. It is
therefore necessary to correct this estimate with information from other sensors.

Accelerometers are electronic sensors that measure proper acceleration, also known as ’g-force’.
At rest or at exact hover the proper acceleration experienced by the drone is an upward pointing
acceleration, equal to the opposite of the acceleration caused by gravity. At rest on the floor the
accelerometer can be used to estimate the attitude by extracting this opposite gravity vector
from the individual directional components. However, when flying it is shown in Appendix B
that the accelerometer is only capable of measuring the thrust vector, which will always be
pointing in the same direction within the measurement frame of the accelerometer, no matter
the roll or pitch of the drone. Except for the thrust vector, only smaller deviations resulting
from wind forces, wind gusts and other disturbances are measurable, no matter how much the
drone is tilted. One could say that the accelerometer measures the instantaneous of the total
aerodynamic forces on the drone.
Hence, the accelerometer is not very useful for estimating the roll and pitch angles, but if the wind
resistance is considered it is possible to extract some information about the angles. Unfortunately,
such a configuration is very vulnerable to alignment errors between the thrust direction and the
accelerometer z-direction. Errors would result in angle offsets which are not correctable with any
of the sensors mentioned so far, as actual world coordinate accelerations are not observable. A
sensor either capable of measuring the actual attitude or at least a sensor capable of measuring
world positions, velocities or accelerations is necessary.

Sensors such as GPS, pressure sensor, wind velocity sensor, camera-based optical flow etc. are all
capable of providing some sort of absolute position or relative velocity measurement. Within this
project the drones are intended for indoor use, as elaborated in Section 2.3. This does not allow
GPS sensors to be used as these are very unreliable indoors. An alternative to GPS has been
invented by GamesOnTrack, intended for indoor usage, described in Section 2.2 and Appendix C.
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2.2. GOT system overview

Within the UAWorld project it has been decided to use this sensor as the main indoor positioning
source. Other sensors such as pressure sensors for measuring the altitude do not work very well
indoor either due to the possibility of sudden pressure changes from room to room or if a door is
suddenly opened. Neither do wind velocity sensors as the velocities with which the drone should
fly, have to be kept small for safety reasons.

Finally, an optical flow sensor is capable of providing an estimate of the horizontal velocity of the
drone by pointing a camera downwards or upwards if flying inside a building. Even though the
velocity measurements are relative to the heading and angle of the drone, why a position estimate
based on optical flow will drift, such velocity measurements can still be used to correct the
drifting behaviour of the dead-reckoning-based attitude estimate. In general the camera-based
approaches are investigated as part of this project to find a camera-based solution which can be
used in conjunction with the GOT sensor.

2.2 GOT system overview

The GamesOnTrack system is an indoor positioning solution based on a transmitter-receiver
configuration using a combination of ultrasound-waves and radio communication.

Figure 2.2: GamesOnTrack system showing two satellites and one beacon [6]

The system consists of a transmitter, denoted as beacon, mounted to the object which needs to be
located in a room where several receivers, known as satellites, are installed. Using time-of-flight
measurements of ultrasound-waves sent from the transmitter to the receivers, the position of the
object can be exactly localized using trilateration, see Appendix C. A common base-station unit
connected to a stationary PC over USB performs this trilateration and sends the determined
position wirelessly to the drone over a UDP connection.
Unfortunately, the GOT system suffers from problems with dead zones or bad position es-
timates, just as the regular GPS system does when navigating in closely packed cities with
tall buildings. Such unknown, unexpected and assumed unforeseeable errors with the position
measurement from the GOT sensor deems it necessary to develop a position estimator that can
take other measurements into account, in this case measurements from an RGB and depth camera.

The specific GOT system set-up installed in the Motion Tracking lab on Fredrik Bajers Vej has
an accuracy down to approximately 10 mm in all three coordinates of the 3 dimensional space
[6] and provides an update rate of approximately 10 Hz. The following covariance matrix of the
measurement noise has been estimated by a former group [7].
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Chapter 2. Problem analysis

ΣGOT =

 0.225 −0.038 0.022
−0.038 0.025 −0.009
0.022 −0.009 0.014

 · 10−4 m2 (2.2)

Where:
ΣGOT is the covariance of measurements from the given

GOT setup

[
m2
]

The GOT system will be seen and modelled as a black-box sensor capable of providing mea-
surements of the drone position with a noise covariance matrix as in (2.2). Furthermore, the
specifications mentioned in this section and Appendix C will be used as initial design parameters
when designing and simulating the position estimator but will be adjusted and tuned if necessary.

2.3 Environment analysis
The UAWorld project focuses on using multiple drones in indoor factory and warehouse envi-
ronments thereby exploiting the full open space of indoor factory halls and warehouses [8]. The
size of the environment, defining both the flying altitude and the distances which have to be
travelled, varies from application to application. A lot of metal is usually present within factory
and warehouse environments which will affect the magnetometer readings, therefore it is assumed
that the magnetometer cannot be used. The system should therefore be capable of estimating
the heading based on other measurements. The indoor environment also limits the usage of GPS
as mentioned previously, hence GOT should be used as a substitute. The test hall being part of
the UAWorld project is more than 400 m2 with a height of approximately 8 m and covered by 15
GOT satellites [9]. This hall is taken as a baseline to which design criteria are put, though the
position estimation solution should not be limited in any way by the size of the environment as
long as it is correctly covered by GOT satellites.

Figure 2.3: 3D modelled map of the baseline environment [10]

The focus of this project is not path planning nor collision-avoidance, and as a consequence no
analysis on how to navigate correctly in the environment will be made. It is assumed that a
collission-free 3D trajectory has been planned in advance [8] using the coordinate frame of the
GOT system. The trajectory is given as sequential waypoints which should be reached by flying
in straight lines.
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2.4. The SLAM problem

The content of the environment will include several mixed-texture objects and possible dynamic
objects. One can therefore not be sure that unique and distinct features will be fixed in space
and re-discoverable from every possible location with every possible orientation. As the on-
board RGB and depth camera have to be used for the position estimation it is important to
consider how the visible environment can provide information about the location of the drone.
It is chosen to affix some uniquely identifiable markers on fixed objects of the environment, eg.
walls, such that at least one marker is always visible to the camera at any possible location
when the drone is close to hover. Uniquely identifiable markers would increase the robustness
of the system as the correspondences to the markers would always be known and thus not
have to be estimated. This will decrease the likelihood of incorrect markers being used due
to incorrect correspondences. Further information such as the actual location of the marker
could also be embedded as part of the marker identifier to increase robustness and efficiency
of the system. However, using specific markers limits the usability of the system to environ-
ments where markers are pre-installed, although the markers would only have to be installed once.

To simplify the marker installation it is chosen that the system should support an arbitrary
placement of the markers and that the markers should not contain any specific information about
their location. The design of the markers is limited by the uniqueness property which should
allow the camera to distinguish between all possible markers and match a detected one with
previously discovered markers to find correspondences.

2.4 The SLAM problem
Knowing that the attitude of the drone can not be stabilized without some sort of position feed-
back, the remaining question is how to get an estimate of the position when the absolute position
sensor (GOT) stops working, e.g. due to loss of sight. Any type of sensor has a probability of
failing, though the probability of sensors relying on wireless communication failing, is usually
larger than local sensors. As the GOT sensor is a wireless sensor providing absolute measure-
ments, the drone would benefit from having a local sensor which can provide measurements for
the position estimation while the GOT sensor is not working. Unfortunately, no such sensor
exists that can provide absolute position measurements while being an independent local sensor.
On-board sensors such as LiDARs Ultrasound sensors, IR sensors or other distance sensors are
all local sensors which provide relative measurements of the unknown surrounding environment.
If 2D cameras or depth cameras are used to picture an unknown environment without any prior
location knowledge of certain detectable features, then cameras are classified as relative sensors
as well. Having only such relative measurements of distinct features from an unknown position of
the drone inside an unknown environment makes this a non-trivial probabilistic problem known
as the Simultaneous Location and Mapping problem.

A short generalized description of the SLAM problem is given below leading up to the analysis
of the present state-of-the-art SLAM algorithms described in Chapter 3. The SLAM problem
consists of two combined probabilistic problems: the location problem where a map of the
environment is known but the location of the drone is unknown and the mapping problem where
the location of the drone is known but the environment is unknown.
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Chapter 2. Problem analysis

Let s denote the current relative position and orientation of the drone, later denoted pose, where
the position is relative to the GOT reference frame and let M denote the known map of the
environment described by a set of distinct landmarks l1 to lN . With a model of the drone
movement, taking in an input signal u, the location problem is a matter of finding the conditional
probability density function of the position of the drone given the input, map, and measurement,
z.

p(s | u,M , z) (2.3)

Where:
s drone pose
u motion model input
M map of the environment including distinct landmarks l1 to lN
z relative measurement of features within the environment

The mapping problem on the other hand is a matter of finding the conditional probability
distribution function of the map of the environment given the known pose of the drone and a
measurement

p(M | s, z) (2.4)

When both the pose of the drone and the map is unknown the problem turns into finding a joint
conditional probability distribution function of both the pose and map while only being given
inputs and measurement

p(s,M | u, z) (2.5)

For many years a lot of research effort has been put into the development of implementations
to calculate or approximate this distribution. Some implementations have been developed for
off-line use, that is post-processing while others focus on the on-line and real-time use-cases.
These two categories of SLAM implementations are further classified in Chapter 3 where also
some of the state-of-the-art algorithms will be mentioned. Stressing the fact that measurements
will be provided by an RGB and/or depth camera and that the SLAM algorithm needs to provide
position estimates for real-time use, an algorithm will be chosen.
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3 Visual Odometry through SLAM

As described in Section 2.4 the SLAM problem consists of determining the relative pose, s, of the
drone while simultaneously making a map, M , of the environment. This can be done in several
ways and with numerous types of sensors, though this chapter will focus on the usage of color
and depth cameras, in conjunction denoted RGB-D cameras. This chapter results in an overall
overview and classification of common state-of-the-art SLAM algorithms which are described in
further details in Appendix D. This overview leads up to the decision of an algorithm to use
within this project. The considered SLAM algorithm types are [11]:

1. Filtering-based SLAM, e.g. Bayesian SLAM.

2. Keyframe-based SLAM, e.g. Graph SLAM.

When the SLAM problem was originally proposed early solutions relied mostly on IR, laser or
ultrasonic sensors and on odometry inputs such as wheel encoders. Due to the rather sparse set
of measurements in these sensors compared to 2D images or point clouds generated from depth
cameras, the proposed solutions were developed as Bayesian filtering frameworks, see Section E.2.
Best known is the work from S. Thrun, D. Fox and W. Burgard, formalised in a later published
book known as Probabilistic Robotics. Examples of Baysian filtering SLAM frameworks include
EKF-SLAM and FastSLAM, both presented in further details in Section D.1.

Throughout the years from 1990 to 2000 cameras dropped rapidly in price, became more compact
and with higher resolutions. As the processing power within computers and microprocessors grew
at the same time, an interest was formed with the investigation of recovering relative camera
poses and 3D structure from a set of calibrated or un-calibrated camera images. Based in the
Computer Vision world this was later denoted as Structure from Motion (SfM), whose focus is
to map the 3D world and its structures through post-processing and optimization of all collected
images. This can thereby be considered as an early offline version of Visual SLAM which was
later denoted as Keyframe-based SLAM being presented in Section D.2.

While the SfM interest mainly came from Computer Vision groups, an interest for Visual Odometry
(VO) started to appear in Robot vision groups about the same time, though independent on
the work done within SfM. Instead of mainly focusing on the mapping and structuring of the
environment, the work within Visual Odometry, later known as Visual SLAM, focused on the
problem of estimating the ego-motion of a robot using only the input of a single camera, multiple
cameras (stereography) and/or a depth camera. A sub-category of the SLAM algorithms within
Visual SLAM is monocular SLAM which uses only one camera. Clearly this shows that Visual
SLAM does not denote a specific type of SLAM implementation but rather the overall focus and
goal which is to estimate the pose of a robot from camera measurements. This agrees with the
overall focus of this project.
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Chapter 3. Visual Odometry through SLAM

3.1 Representation of the SLAM problem
As presented in Section 2.4 the SLAM problem contains the estimation of both the drone
pose, sk, at timestep k and the map, M , described by the landmarks l1 to lN , given only
measurements of the environment znk and motion model inputs, uk. This problem can be drawn
in a constraint graph. Let znk denote a measurement of a distinct landmark, ln, within the
environment at timestep k. This implies that the correspondence between a measurement and
the actual landmark within the map is known. As presented in Section 2.3 a set of uniquely
identifiable markers has to be placed in the environment resulting in known correspondences.
These correspondences impose a set of constraints between the hidden pose, the map variables
and the image measurements, being the arrows in the graph. Furthermore, a motion model of
the drone imposes the dashed constraints from pose to pose at increasing time steps.

s1

z1
1 z1

2 z1
3 z1

4

s2

z2
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Figure 3.1: Constraint graph [12]

With a sufficient high number of constraints it is possible to estimate the drone’s pose and the
locations of landmarks. The constraints and variables in such a constraint graph can either be
treated as deterministic or probabilistic variables. With probabilistic variables the constraint
graph turns into a Bayesian network.
Two categories which both simplify and solve this SLAM problem have been formed: the Filtering-
based and Keyframe-based methods. In Appendix D a description of these two categories together
with a presentation of a few commonly used state-of-the-art algorithms are given.
The Filtering-based methods take a Bayesian approach to solve the probabilistic SLAM problem,
where the constraints in the constraint graph are treated probabilistic variables. This is done by
marginalizing out any past poses and measurements. This results in a recursive implementation
capable of providing new state estimates in real time for each new measurement, which is
especially useful for online applications. As an example EKF-SLAM uses a big Extended Kalman
Filter which combines the pose estimate and the estimated location of all landmarks.
The Keyframe-based methods usually impose deterministic constraints in the constraint graph
and take an optimization approach to the SLAM problem by keeping track of a subset of
previous poses and measurements, using these together with new measurements to find an
optimal current pose and an optimal location of the current landmarks within the map. This
results in algorithms which are computationally demanding and mostly intended for offline usage,
but gives better results with especially large environments where loop closure is crucial. However
the computationally demanding algorithms can be split into separate tasks to allow real-time
estimates to be generated while running the optimization in the background.
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3.2 Visual SLAM Algorithms
A thorough overview of the most commonly used state-of-the-art Visual SLAM Algorithms within
the filtering-based and keyframe-based categories is contained within Appendix D. An overview
of the algorithms described in Appendix D is shown in Figure 3.2. One of the problems with
most of the Visual SLAM methods shown in Figure 3.2, is that these methods are far from being
truly usable for mobile robot navigation. Robot navigation requires real time state estimates of
the position, hence pure offline solutions are not really usable. On the other hand, the real time
solutions, especially the keyframe-based, require a lot of processing power and memory.

Figure 3.2: State-of-the-art Visual SLAM algorithms

The Visual SLAM Algorithms shown in Figure 3.2 can either be used with monocular, stereo,
depth cameras or a combination. Unfortunately, monocular SLAM, using only a single camera,
includes a huge limitation in its’ unrecovered scale problem as the depth can not be estimated
from just a single image and thus has to be inferred from a sequence of images. The leading
limitation in monocular SLAM lies in the poor robustness, which is an inherent problem of
pure vision-based methods, due to the fact that image tracking is easy to fail for many motion
behaviours and environment structures.

Furthermore, the main challenge in large scale mapping remains in long term visual place
recognition, also known as loop closure, which is the ability to detect past locations after having
discovered new and unknown terrain for a while. In this project the Visual SLAM implementation
is combined with external position measurements provided by the GOT system, as long as these
are available. If lost, it is anticipated that these external position measurements will only be lost
intermittently, hence loop closure will not be of high importance as the position measurements
can be used to correct the estimate. Loop closure will in this project therefore not be considered.

To summarize, the interest of this project will be focused on mainly localizing the drone
(positioning) without considering loop closures and without focusing on the 3D mapping of the
environment. Hence, there will be no focus on Structure from Motion but rather a high focus
on Visual Odometry also known as Visual SLAM. The Visual SLAM implementation should
take image measurements, GOT measurements and other possible measurements and/or external
estimates as input.
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3.3 Choice of algorithm
The focus of this project is Visual SLAM using measurements from a color camera and/or a depth
camera. As presented in Appendix D the Keyframe-based algorithms are useful for image-based
SLAM but unfortunately very computationally intensive. Using measurements from hundreds
of pixels simultaneously, the Keyframe-based algorithms optimize the pose and map through
Bundle Adjustments. This makes these types of SLAM algorithms robust to sudden movements,
changing environments, loop closures etc. In this project however the drone will be flying in a
controlled environment where static markers to be detected are put up. The system is also given
GOT measurements to help correct the position estimate, and thereby also help against loop
closures. Using static markers reduces the number of possible measurements within a single image
frame and by applying the GOT position measurements the uncertainty in the position estimate
can be reduced significantly. As the movements of the drone is controlled by the controllers
to be designed, a model of the system will also be designed. Such a model can provide useful
position predictions for a Filtering-based method while a Keyframe-based method will have to
be modified to include such model predictions.

Due to the reduced number of measurements, the possibility to include several sensors, and due
to the availability of a model of the drone, a Filtering-based method is preferable.

As described in the introduction, either RGB images, depth images or a combination of these,
denoted RGB-D, have to be used. Utilizing pure RGB images can result in the unrecovered scale
problem, as described in Section 3.2, because depth of detected features has to be estimated
initially. This unrecovered scale problem may not be that great of a problem in a solution
that incorporates measurements from other sensors than RGB cameras. Especially sensors
providing measurements in a global frame like the GOT sensor would probably reduce this
problem significantly. Nevertheless, it is deemed appropriate to use a depth camera, since this
will remove the uncertainty resulting from the unrecovered scale problem from the system, and
thereby make it safer. On the other hand, one cannot be sure that unique features are always
detectable within pure depth images, therefore it is chosen to use a combination of both RGB
and depth (RGB-D) measurements.
Uniquely identifiable markers will be installed in the factory environment in such a way that at
least one marker is always visible to the drone, as described in Section 2.3. Even though the
environment is of a finite size the number of markers to install to fulfil this dense requirement will
quickly outgrow the efficiency of EKF-SLAM. It is therefore beneficial to use one of the FastSLAM
algorithms depending on the correctness of the motion model and the number of states to estimate.

In [13, 14] it is shown that the FastSLAM 2.0 algorithm has superior performance compared to
the FastSLAM algorithm. Since the system is supposed to work in real-time, it is decided to use
FastSLAM 2.0, in the following referred to as FastSLAM. The FastSLAM 2.0 algorithm includes
the improved proposal distribution where the particles are spread less due to the inclusion
of the current measurement, see Section D.1.3 and Section E.9. This allows less particles to
be used giving the same space density after the prediction step and hence less computational
requirements.
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3.3.1 RGB-D measurements and feature extraction
An RGB-D camera provides a 2D color image (RGB array) and a 2D depth image (depth
array). Using a given pixel coordinate, the intrinsics of the camera and the corresponding depth
value, a relative 3D coordinate can be calculated, e.g. through the transformation described in
Appendix G. This hereby enables calculation of 3D coordinates, relative to the camera frame, of
features present in both the RGB and depth image. Thus, if unique features can be extracted
from the 2D images provided by the RGB-D camera they can in turn be converted to relative
3D measurements to be used in the SLAM implementation. A distinct and uniquely identifiable
type of markers should be chosen such that the markers are identifiable within at least the RGB
image, allowing a corresponding depth value to be found within the depth image. Designing a
SLAM implementation using specific markers limits the use-cases to environments where markers
are pre-installed, however this is acceptable for the factory environment described in Section 2.3
as the markers would only have to be installed once. Uniquely identifiable markers would as
well increase the robustness of the system as the likelihood of incorrect correspondences due to
incorrect feature matching, is decreased significantly.

(a) Examples of QR codes (b) Examples of ArUco markers
[15]

Figure 3.3: Illustration of different types of uniquely identifiable markers

Examples of uniquely identifiable markers which can be placed manually in the environment
include QR codes, Figure 3.3(a), and ArUco markers, Figure 3.3(b), both being rotation and
scale invariant and rediscoverable from different viewing angles. ArUco markers, as presented in
Appendix H, were originally developed for augmented reality for tracking and positioning with
focus on reliability and rediscoverability whereof QR codes are intended for information storage.
As the environment is finite, a huge number of unique markers is not necessary and thus the
data length of the identifier to be contained within a marker will be short. Therefore information
codes such as QR-codes do not give any benefits.

Based on the analysis of the ArUco markers in Appendix H it is decided to use and install them
within the environment according to the requirements specified in Section 2.3.

With the choice of the unique ArUco markers, the RGB image should be used to identify the
pixel locations of visible markers. From the same 2D pixel locations depth measurements should
be grabbed within the depth image, thereby corresponding to the depth of detected markers.
With these sets of 2D coordinates and depths a resulting set of relative 3D measurements of
detected ArUco markers follows.
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The FastSLAM measurement vector for image measurements relative to the camera frame is thus
defined as:

zc =

xcyc
d

 (3.1)

Where:
zc is the measurements vector of a feature in the RGB-D image
xc is x-coordinate of the feature the camera frame
yc is y-coordinate of the feature the camera frame

The FastSLAM implementation thus has to include a measurement model of the camera, includ-
ing the camera intrinsics, describing how to calculate an estimated measurement vector for a
current landmark within the map, given the current pose of the drone. Furthermore, an inverse
measurement model has to be defined to describe how to convert a detected marker, given by the
markers measurement vector, into a corresponding 3D coordinate relative to the camera frame
which can be inserted into the map as a new landmark.

The analysis and descriptions provided within this chapter conclude the problem analysis with the
choice of the FastSLAM 2.0 algorithm to be used as the SLAM algorithm for this project. RGB
and depth measurements from an RGB-D camera will be used to detect uniquely identifiable
ArUco markers placed in the environment such that 3-dimensional measurement vectors, with
known correspondences to the detected markers, can be provided to the FastSLAM algorithm.
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4 Platform Description

In this project it has been decided to use the Intel Aero Ready to Fly kit. This kit is sold by Intel
and is targeted at researchers and developers. The kit contains a fully assembled quadcopter
ready to fly with on-board cameras and sensors. The Intel Aero platform is aimed for development
within the field of unmanned aerial vehicles. The kit consist of a carbon frame on which the
following components are mounted [16]:

• Motors

• Motor controllers

• Power supply

• GPS and magnetometer

• RC serial receiver

• Intel Aero Compute board

• Intel Aero Flight Controller

• Intel RealSense R200 RGB-D camera

• 8 MP RGB camera

• Monocrome VGA camera.

4.1 Intel Aero Flight controller
The Intel Aero flight controller is a board consisting of a microcontroller and a set of peripherals.
The microcontroller is specified as an STM32 microcontroller which is running the open source
PX4 autopilot code [17]. Within this project the Intel Aero flight controller will be referred to as
the PX4.

The STM32 microcontroller is connected to a list of peripherals including a GPS, magnetometer,
accelerometer, gyroscope, barometer and motor controllers. These peripherals allow the PX4
autopilot to have control of the drone. The PX4 has two different interfaces from which it can
be commanded. The first interface is a 2.4 GHz radio receiver allowing a pilot to command the
PX4 with a remote controller. The second interfaces is a HSUART serial connection allowing an
onboard companion computer to send commands to it. The communication protocol used on the
HSUART connection is the open source MAVLink protocol.

The PX4 autopilot can primarily be operated in two different modes. A position mode, in which
it can be commanded to go to specific positions, and a stabilise mode in which the drone can be
commanded to maintain specific attitude references. For academic reasons it is decided to use the
PX4 in the stabilised mode which requires a position controller to be designed and implemented,
providing attitude references to the PX4 autopilot.

When the PX4 is operating in stabilised mode it is using an attitude controller which relies on
a quaternion based attitude estimator [18]. This attitude estimator is using inputs from the
gyroscope to estimate the attitude of the drone. The attitude estimator is working by integrating
the angular velocities measured by the gyroscope to obtain the attitude of the drone. The reason
why such integrated gyroscope measurements works as the attitude estimate, is due to an initial
calibration of the drone performed before take-off using the accelerometer. The heading of the
drone cannot be calibrated in the same way as the pitch and roll angles. Therefore, the PX4 is
either relying on a heading estimate from the magnetometer or an external heading measurement
received through the MAVLink connection.
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The magnetometer is deemed unusable in the analysis of the environment performed in Sec-
tion 2.3.This means that the PX4 has to be supplied with heading estimates before the attitude
controller can be expected to function properly.

4.2 Intel Aero compute board
The Intel Aero compute board is an onboard companion computer built and intended specifically
for Aerial vehicles. The board is powered by a quad core Intel processor and contains a variety of
peripherals which makes the board suited for unmanned aerial vehicle operations. The operations
system running on the Intel processor is the open source Yocto project [19] which is a Linux
operating system intended for embedded applications.
Besides the processor, the board is equipped with 4 GB of memory and 32 GB of storage. The
important peripherals for this project is the HSUART serial connection to the Intel Aero Flight
controller. This connection allows applications running on the Intel Aero compute board to
send commands to the PX4 autopilot. The Intel Aero compute board will be referred to as the
companion computer.

A second important peripheral being used in this project is the USB 3.0 connection, connecting
the compute board with the Intel RealSense R200 RGB-D camera. Another peripheral used
is a wireless module which is configured to act as a wireless WiFi hotspot. This allows other
computers to connect to the compute board and communicate with applications running on the
companion computer through either a TCP or UDP connection. The wireless connection is an
important feature in relation to receiving position measurements from the GOT system which is
connected to a separate computer as explained in Section 2.2.

The Robot Operating System (ROS), see Appendix I, is installed by default on the companion
computer. This gives some advantages when developing and debugging the project. First of all it
gives access to already existing robot related libraries. Secondly ROS provides a message passing
system which is based on a publish and subscribe policy. This message passing system allows
easy inter-task communication and furthermore the opportunity to record and playback a session
through so-called rosbags. Thirdly an interface between the ROS environment and the PX4
autopilot, using MAVLink, already exist. This interface is called MAVROS and is implemented
as a ROS node within the ROS system. This allows two way communication between any ROS
node and the PX4. The MAVROS node works as a bridge between ROS nodes and the PX4,
doing all the translation from ROS messages into MAVLink packages. Furthermore the MAVROS
node can also be used as an interface to the Gazebo drone simulator described in Appendix J.

4.3 Intel RealSense R200 RGB-D camera
To get measurements of landmarks within the environment, a camera-based solution capable of
providing both RGB and depth images is needed. An important peripheral to this project is
therefore the RealSense R200 RGB-D camera installed on the the Intel Aero drone.
Capturing depth of an environment can be done in several ways, where most commercial solutions
either contain a stereo camera pair, a structured light (projective) solution or Time-Of-Flight
technology. The R200 camera consists of one RGB camera with a resolution up to 1920× 1080,
two infrared (IR) cameras with a resolution up to 640× 480, mounted in a stereo configuration,
and finally an infrared projector. With enough IR light present in the environment the two IR
cameras are enough to capture depth of a scene. However, to make sure that surfaces with a
plain texture can be captured as well, an IR laser projector emits a grid of IR lines.
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The camera also include a built in ASIC processor doing all necessary preprocessing, rectification,
registration and disparity map generation using the IR stereo image pair. The result is a
non-distorted depth image where each pixel contain a depth measurement in millimeters. By the
help of the ASIC processor, depth images can be provided at full frame-rates of up to 60 FPS.
The camera comes pre-calibrated from Intel allowing both intrinsics and extrinsics of the cameras
and processed depth image to be extracted. Furthermore ROS libraries and processing nodes
allow easy capture of both RGB and depth images, using the image transport protocol being a
part of the ROS environment. Unfortunately at the time of development and writing the release
of the RealSense camera nodelet for ROS contains an error such that the image registration
between the RGB and depth image seem to be misaligned.

A dedicated node is therefore developed within this project to handle the registration and
alignment of the RGB and depth image, as described in Section F.5. The result is a 2-dimensional
array aligned with the RGB image. Within the 2-dimensional array each element contains a
3-dimensional measurement vector including the corresponding depth pixel location and depth
measurement. This allows a feature detector to find certain features within the RGB image and
then look up the corresponding 3-dimensional measurement vector within the 2-dimensional
array, such that measurements can be provided to the FastSLAM implementation. An example of
an RGB and depth image, where the depth is overlaid and visualized as greyscale, with detected
ArUco markers and the corresponding measurement vectors, is shown in Figure 4.1.

Figure 4.1: Measurement vectors printed next to detected ArUco markers within a combined
visualization of the RGB and depth image. Dark areas of the image are due to the wall in the
image being outside the range of the depth camera.

Further details of the R200 camera, the functionality of the camera, the factory calibrated
parameters and the developed processing node within ROS, can be found in Appendix F.
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5 System Overview

The goal of this project is to achieve a robust and error tolerant indoor position estimation for
drones, such that the position can be stabilized as described in Section 2.1 even when indoor
position measurements becomes unreliable. In this chapter an overview of the proposed solution,
designed for the platform described in Chapter 4, is given. Based on the analysis and presentation
throughout Chapter 2 to Chapter 4, a list of assumptions and conditions to expect is initially
put up. Thereafter some structural decisions are taken, describing how the chosen FastSLAM
algorithm fits together with the chosen platform and controllers to implement. The structural
decisions are followed by a presentation of the different elements of the system resulting in
the system overview diagram shown in Figure 5.2, representing the individual elements of the
proposed solution. In the end of the chapter an implementation layout diagram of the system
is presented, showing the different hardware and software layers used when implementing and
integrating the different parts of the system.

5.1 Assumptions and conditions
The assumptions and conditions under which the developed system should work is presented
in the list below. These requirements are all derived from the problem analysis and platform
description presented in Chapter 2 to Chapter 4.

• The drone should include a PX4 flight controller capable of stabilizing the attitude. This
flight controller needs at least an attitude controller and an attitude estimator using IMU
measurements.

• The drone should be equipped with an RGB-D camera and a programmable companion
computer running Linux and capable of running ROS.

• The considered environment includes factories and warehouses. These environments
will likely contain large amounts of metal affecting the magnetometer readings. Thus
measurements from the magnetometer cannot be used.

• The desired trajectory, that the drone should fly, is defined as position references at
way-points where in between the drone can fly in straight lines.

• The GOT system should cover the full operating environment only with smaller deadzones.
When the system is working the accuracy is expected to be down to 10 mm.

• The GOT measurements are provided at 10 Hz.

• ArUco markers should be installed in the environment such that at least one marker is
always visible to the camera from any possible position close to hover.

• When taking off GOT measurements should be available.
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5.2 Solution overview
As concluded in Chapter 3 the problem of estimating the position of the drone using only relative
measurements is known as the SLAM problem, and the Filtering-based FastSLAM 2.0 algorithm,
in the sequel referred to as FastSLAM, is chosen as the real-time estimator to provide the
position estimates necessary to stabilize the attitude and position of the drone. The full system
is developed on the Intel Aero Ready to Fly drone incorporating a PX4 flight controller however,
this flight controller will only be used for stabilizing the attitude of the drone. Attitude set-points
for the PX4 are generated by a designed position controller using Full-State estimates generated
by an Extended Kalman Filter estimator. As the absolute heading can not be observed by the
PX4 flight controller, heading estimates are provided back to the PX4 by the estimator. The
estimator will furthermore provide attitude and velocity estimates to FastSLAM to reduce the
computational requirement and allowing a simpler motion model to be used. This results in the
following structural overview diagram connecting the individual elements to be developed within
this project.

Figure 5.1: Structural overview of proposed solution

The following sections describes the proposed solution composed of the individual blocks, the
interconnections, the decisions made and reasoning behind. This presentation of the solution
provides an overview of each block and the signal content between each, leading up to the final
system overview diagram shown in Figure 5.2.

5.2.1 Controlling the attitude
One of the advantages of choosing the Intel Aero platform is the included PX4 flight controller,
which is an open source flight controller widely used in the development of UAVs. The PX4
flight controller hardware comes equipped with accelerometers, gyroscopes and the unusable
magnetometers, as described in Section 2.3.
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The PX4 flight controller software includes an attitude estimator and an attitude controller.
The attitude estimator is used to estimate roll, pitch and yaw angles of the drone based on
measurements provided by the IMU, i.e. measurements of drone acceleration, ẍ, ÿ and z̈, provided
by the accelerometer and angular velocities of the drone, φ̇, θ̇ and ψ̇, provided by the gyroscope.
However, the absolute yaw angle can not be estimated from any of the internal sensors, since the
magnetometer can not be used in the described environment, why yaw angle estimates should be
provided as inputs to the internal PX4 attitude estimator such that the attitude controller is
able to control the heading as well.

Before taking off the accelerometer provides a good measurement of the attitude which is used
to calibrate the internal roll and pitch estimate of the PX4. However when the drone is flying it
is assumed that these estimates will slowly drift as described in Section 2.1, which is important
to consider when designing the estimator and position controller. The PX4 attitude controller,
fed with attitude and thrust references as shown in (5.1), will hereafter generate the necessary
signals for the four motor controllers.

uPX4 =


φref
θref
ψref
Tref

 (5.1)

Where:
uPX4 is the input reference vector for the PX4 attitude controller
φref is the roll reference for the attitude controller in the PX4
θref is the pitch reference for the attitude controller in the PX4
ψref is the yaw reference for the attitude controller in the PX4
Tref is the trust reference for the attitude controller in the PX4

5.2.2 Controlling the position
One of the goals of this project is for the drone to be able to hover and hold its’ position at a
defined coordinate in space, i.e. xref, yref and zref, with a desired heading angle, ψref. Another
goal is to let the drone follow predefined trajectories which can be tracked even at loss of GOT
position measurements, where the trajectories are defined with way-points of the reference input
vector shown in (5.2).

sref =


xref
yref
zref
ψref

 (5.2)
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Where:
sref is the reference vector for the developed position controller
xref is the reference of the x-coordinate for the developed position

controller
yref is the reference of the y-coordinate for the developed position

controller
zref is the reference of the z-coordinate for the developed position

controller
ψref is the yaw reference for the developed position controller

To fulfil these goals a position controller is developed to generate attitude references for the
PX4 flight controller, hence a controller giving the φref, θref, ψref and thrust set-points to the
PX4 as defined in (5.1). For such a controller to be stable a proper position estimator, working
even at loss of GOT measurements is needed. As described in Section 2.1 the position estimate
will drift if no other sensors are used, why a camera-based solution is developed using RGB-D
measurements and the FastSLAM algorithm.

5.2.3 Computational considerations
Due to the fact that the FastSLAM algorithm is highly computational, a series of decisions
are taken in order to increase the performance of the algorithm itself and also to increase the
accuracy of the state estimate that is fed to the controller.
The model of the drone used in this project is presented in Section 6.1. The state vector, χ, of
this model includes the position, i.e. Hx and Hy in the heading frame and z in Earth frame, linear
velocities, i.e. Hẋ and Hẏ in the heading frame and ż in Earth frame, and the drone attitude, i.e.
φ, θ and ψ plus some additional states.
Based on the update rate of FastSLAM that others have obtained when implementing the
algorithm for estimating less states [14, 20], it is assumed that FastSLAM will not be able to
provide a full state estimate at a rate sufficient for controlling a drone. The update rate of
FastSLAM will in this project further be limited by the image processing of the RGB-D images.
Besides that, it is anticipated that the update rate of FastSLAM will be sporadic, due to different
amount measurements of landmarks being processed at each iteration, which is usually not
desired in a control system. Therefore it is chosen to use a Extended Kalman filter (EKF) to
estimate the full state vector, χ̂, needed for the controllers, in such a way that a higher and
constant update rate is obtained. Thereby it is possible to reduce the state vector estimated
by FastSLAM, to only include states that cannot be estimated precisely otherwise, thus saving
computational power.

5.2.4 Full-State Extended Kalman Filter
As mentioned a yaw angle estimate has to be fed back to the PX4 to ensure that heading references
are tracked by the internal attitude controller. FastSLAM is expected to run at a slower rate than
both the internal attitude controller and the position controller due to computational limitations
and limitations of the RGB-D frame-rate. It is therefore decided to design a Full-State Extended
Kalman Filter (EKF) running at a faster rate than FastSLAM, to estimate all necessary states
for the position controller and the necessary yaw angle for the attitude controller within the PX4.
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The EKF estimator is based on a model of the drone including the PX4 attitude controller,
such that predictions can be made at a sufficiently fast rate. The EKF takes in the drifting
attitude estimates from the PX4 flight controller and the pose estimate from FastSLAM, as
sensor measurements. The particles within FastSLAM estimates the full probability density
function (PDF) of the pose vector used in the algorithm. Thus to be able to use this estimate in
the EFK the sample mean and covariance of this PDF is calculated based on the particles of the
filter. Thereby approximating the PDF estimated by FastSLAM as Gaussian distributions.
The resulting estimates provided by the EKF includes both the attitude, position and velocity
of the drone in the local heading frame. The full state vector, χ̂, is provided for the position
controllers, and the yaw angle is supplied back to the attitude estimator of the PX4.

5.2.5 Including attitude estimates into FastSLAM
As the position estimates from FastSLAM are fed back into the EKF to correct the attitude
estimate, one must assume that the EKF is capable of correctly estimating the roll and pitch
angles of the drone, which in any case is assumed to be close to hover at all times. Consequently
there is no need for FastSLAM to estimate the roll and pitch angles as well, because an estimate
of roll and pitch is determined by the EKF at a faster rate, which can be provided as inputs
to FastSLAM. This allows the pose state vector, s, within FastSLAM to be reduced to only
four states, as shown in (5.3), being the 3D position of the drone, x, y, z, and the yaw angle, ψ,
indicating the heading of the drone. Notice that it is still necessary to include the heading as
only RGB-D measurements of the environment can provide information about the absolute yaw
angle.

s =


Ex
Ey
Ez
ψ

 (5.3)

Where:
s is the state vector, which FastSLAM is used to estimate
Ex is the x-coordinate of the drone in the earth frame
Ey is the y-coordinate of the drone in the earth frame
Ez is the z-coordinate of the drone in the earth frame
ψ is the rotation of the heading frame around the z-axis of the

earth frame

The position of the drone is given in the Earth frame, see Appendix A. If no frame is defined for
the variable the Earth frame is used.

5.2.6 Simplified motion model
Estimating the full state vector with an EKF allows a different motion model to be used in the
FastSLAM. With the state estimates from the EKF, a simple kinematic motion model can be
used in FastSLAM to predict the pose.
Within Section A.3 the dynamics of the drone are modelled as a black-box ARX model, being a
motion model from attitude reference inputs to the attitude, velocity and positions. This motion
model is used for predictions in the EKF but includes a lot more states than the six states
describing the position and orientation of the drone, constituting the pose within FastSLAM. If
this motion model is to be used within FastSLAM the state vector would have to be expanded
unnecessarily only to require a higher number of particles or resulting in a less robust pose
estimate.
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Furthermore the ARX model is determined for the sample rate of the EKF, which is higher than
the expected FastSLAM sample rate, why the motion model would also have to be resampled to
be usable. Therefore it is decided to use a simple kinematic motion model for the prediction step
within FastSLAM, based on the linear velocity and yaw estimates from the EKF as shown in
(5.4).

uSLAM =


Hˆ̇x
Hˆ̇y
Hˆ̇z
ψ̂

 (5.4)

Where:
uSLAM is the vector signals of that the motions model used in the

FastSLAM algorithm
Hˆ̇x is the x-coordinate of the drone in the heading frame
Hˆ̇y is the y-coordinate of the drone in the heading frame
Hˆ̇z is the z-coordinate of the drone in the heading frame
ψ̂ is the EKF estimate of the rotation of the heading frame around

the z-axis of the earth frame

5.2.7 Including RGB-D measurements
Within the environment a set of static ArUco markers, see Section 3.3.1, are placed such that at
least one marker is always visible to the drone and that the markers are visible from different
viewing angles. The ArUco markers allow detection and unique identification within the RGB
image from the RGB-D camera. For the ease of the implementation, the feature extraction and
identification is implemented in OpenCV, being an integrated part of ROS. For further details on
the use of ArUco marker and OpenCV in this project see Appendix H. The measurement vector
of a detected marker constitutes a converted 2D pixel location of the marker, corresponding to
the marker coordinate within the depth image, xc and yc, and a measured depth to the landmark,
d, as shown in (5.5).

zc =

xcyc
d

 (5.5)

Where:
zc is the measurement vector of the RGB-D measurements
xc is the x-coordinate of a landmark in the camera frame
yc is the y-coordinate of a landmark in the camera frame
d is the measured depth to of a landmark in the camera frame

Such measurements can be used within the FastSLAM algorithm as relative measurements to
detected landmarks present within the map of FastSLAM. Using the pixel locations of detected
markers and their corresponding depth measurements the detected markers can be converted
into 3D coordinates relative to the camera frame. Furthermore to convert these 3D coordinates
relative to the camera frame into world frame, the roll and pitch has to be known. Roll and
pitch are therefore included as input to the FastSLAM 2.0 algorithm.
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5.2.8 Including GOT measurements
Whenever GOT position measurements are available these should be included into the FastSLAM
algorithm in order to increase the estimate accuracy and help with loop closures. This requires
that the GOT measurements are included as a main part of the FastSLAM implementation as
another type of measurement. The coordinate system of the FastSLAM implementation should
align with the GOT coordinate system, as position references (trajectories) are given within
this system, see Section 2.3. The GOT position measurements can therefore be seen as relative
measurements to a fixed GOT origo, which should be included into FastSLAM as a known
landmark at position (0, 0, 0) with zero covariance. The resulting measurement vector constitutes
the GOT position measurement of the drone relative to the GOT frame, being xG, yG and zG,
as shown in (5.6).

zG =

xGyG
zG

 (5.6)

Where:
zG is the measurement vector of the RGB-D measurements
xd is the x-coordinate of the drone in the GOT frame
yd is the y-coordinate of the drone in the GOT frame
zd is the z-coordinate of the drone in the GOT frame

5.3 System diagram
With the decisions taken in the previous sections, a new system overview diagram is shown in
Figure 5.2 which include the blocks to be developed and all of their interconnections with the
now defined signal content.
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Figure 5.2: System overview diagram
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5.4 Implementation considerations
Now that the overview of the system is given it is important to consider how the system can be
implemented on the given platform. The individual elements of the proposed solution, being
the Controller, EKF and FastSLAM, should be implemented inside the on-board Intel Aero
compute-board, which is connected to the PX4 and the rest of the needed peripherals.

Both the PX4 MAVLink connection, the RealSense R200 camera and the Intel Aero compute-
board is supported by the ROS environment. It is decided that the proposed solution should be
developed and fully contained within ROS. As explained in Appendix I, ROS is an open-source,
meta-operating system for robots allowing easier and faster development using many pre-existing
libraries, visualization tools and debugging tools. Furthermore the ROS environment provides
real-time threading capabilities which is desirable for robot and control applications, as well as
all necessary tools and libraries for writing, building and running code across multiple computers
in a distributed ROS environment. The individual elements of the system can be developed and
implemented as separate tasks, running in parallel. All tasks are able to share messages with
each other within the ROS environment by publishing and subscribing to so-called topics.

An overview of the ROS system to be developed is shown in Figure 5.3, including the three main
nodes of the system and other necessary nodes to access external peripherals used by the system.

Figure 5.3: Implementation layout within ROS

Another beneficial tool being an integrated part of the ROS environment is the Gazebo simulator
including a physics engine and 3D visualization. This simulator can be coupled together with
Software in the Loop simulation of the PX4 to give an exact simulation environment of a
PX4-based drone equipped with a companion computer running ROS, see Appendix J. This
allows simulations and verification of the implemented controllers, estimators and the FastSLAM
algorithm, solely using simulated IMU and RGB-D camera measurements. This both saves time
and is especially a safe way of doing the initial tests of new implementations to avoid sudden
crashes of the drone due to coding errors.
In the following chapters the development of each element of the system, composed by the
Controller, FastSLAM and the Extended Kalman Filter, is carried out and described.
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6 Controller

In this chapter the control solution for the drone is presented. Firstly, with the purpose of
designing the controllers, the behaviour of a drone is described with a model of it.
From the system description in Chapter 5 and illustrated in Figure 5.2, it is known that the
controller block should stabilize the position of the drone and reach position references given
as way-points, defined in world coordinates x, y and z. With these considerations and using
the model found, it is proceeded with the design of the controllers. Finally, the performance of
these controllers is tested with the actual drone. To do so, the controllers are first implemented
in C++ code as a node in ROS. Their implementation and performance are tested together
in a simulation environment which is chosen to be Gazebo, a physics simulator that allows to
interface with ROS described in Appendix J.

6.1 Drone Model
In this section, a model to describe the behaviour of a drone is derived. In Appendix A, a first
principle based description of a quadrotor is presented. For making the controller design easier,
a linearised version of the model found is presented in this section following the derivation from
Section A.2. This simplified model is finally expressed in a state-space form for the design of the
controllers.

BxBy

Bz

f1

f2

f3

f4

ψ

Ex

Ey

Ez

θ

φ

Figure 6.1: Drone description. The different frames and rotations considered for the modelling
are shown as earth frame (EF) and body frame (BF). The rotors of the drone are numbered from
1 to 4.

The description of a drone as seen from a static fixed frame defined as the earth frame (EF) is
achieved by describing its pose. This is defined as the combination of the position, Eξ, and the
orientation, η. The pose is then what describes the variables of the system.
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Eξ =

xy
z

 η =

φθ
ψ

 (6.1)

Where:
Eξ describes the position of the drone in an earth defined frame
η describes the orientation of the drone

The position of the drone is described the drones coordinates in the axes x, y and z, and
the orientation is described as the rotation around each of the axes, as shown in Figure 6.1. The
rotation φ around x is defined as roll, θ around y is defined as pitch and ψ around z as yaw.
The linearised version of the model found describes the drone with the variables in the system
decoupled if a frame that only follows the yaw movement of the drone is considered. This frame,
defined as the heading frame (HF), together with the assumptions presented in Section A.2, leads
to the equations describing the model shown in (6.2).

Iη̈ = τ

mz̈ = T −mg[
Hẍ
Hÿ

]
= g

[
θ
−φ

] (6.2)

Where:
I is a diagonal matrix defining the moment of inertia

of the drone

[
kg m2

]
m is the mass of the drone [kg]

g is gravity
[
m/s2

]
τ is the resultant torque vector [N m]
T is the thrust [N]

The input to the system is defined as the combination of τ and T and the output as ξ and η
described in the HF.
However, as explained in Section 4.1, the drone being used has a PX4 Flight controller imple-
mented which requires changes in the description of the model. The controller actuates over the
rotor speeds, which are related to τ and T as explained in Section A.1. However, the inputs
given to the flight controller vary depending on the flying mode being used. When flying in
stabilised mode, these inputs are given with a remote controller, and consist on roll and pitch
references, yaw rate references and a scaled thrust input. According to [21] the control structure
in this mode is a combination of P controllers for roll, pitch and yaw angles and PID controllers
for the angular rates.

Since the parameters describing these controllers are not known, it is decided to find a description
of the drone with an empirical-based model. It is chosen to find a black-box model described
with auto-regressive with exogenous input (ARX) type of models by fitting data extracted from
flight tests of the drone using the PX4 controller. This fitting assumes no dynamics on the noise
or disturbances to the system, allowing to find a unique fitting solution using linear regression.
Assuming no noise dynamics, since the model description is linear, using ARX models will allow
to find a unique solution for the fitting. The description of the ARX models used is found in
Section A.3, and its derivation is based on the linearised model described. The plots showing the
fit of the models found are shown in Section A.3 together with the models themselves.
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The experiments performed to find the models are done in an environment equipped with a
Vicon system that allows the extraction of the position and orientation of the drone, which then
can be used to fit a model for the variables of the system with the inputs given to the PX4 in
each experiment. For the roll, pitch and z̈ models, the flight is performed in stabilised mode
with a remote controller.

To obtain measurements to fit a model from yaw reference to yaw, a different strategy has to
be used, since it is not possible to give a yaw reference as input in stabilised mode while flying
manually. Therefore measurements for fitting the yaw model are obtained by getting the drone
stabilised in a chosen position with the PX4 position hold mode and giving a set of yaw references
as input. This allows a model for yaw having yaw references as input. Assuming small angle
approximation each of the variables, φ, θ, ψ and z̈, is independently related to one of the reference
inputs given in the tests performed with the PX4 controller. Thus an independent model can be
found between each of the variables and an input. Afterwards, the models for x, y and z can be
found by making a discrete integration of their second derivative models twice, following what is
described in by (6.2), leaving the models found for x and y only valid in the HF. The variables
of the system can then be represented in the form shown in (6.3), where each transfer function,
G(z), represents the discrete transfer function found with the ARX model fitting.

φ(z) = Gφ(z)φref(z)
θ(z) = Gθ(z)θref(z)
ψ(z) = Gψ(z)ψref(z)

x(z) = gT 2
s

(z− 1)2 θ(z)

y(z) = −gT 2
s

(z− 1)2φ(z)

z(z) = T 2
s

(z− 1)2Gz̈(z)T (z)

(6.3)

Where:
G•(z) is the transfer function corresponding to the output • in the z

domain
Ts is the sampling time of the system

The ARX representation of the models can be rewritten in a state-space form as in (6.4)
and the transformation is performed as explained in Section A.4. The sample rate used for
extracting the data to fit in the models is 20 Hz.

χk+1 = Aχk +Buk

yk = Cχk
(6.4)

This new expressions define four systems with ψ, θ, φ and z̈ as outputs, each with a corresponding
input. This implies that the state vector χ of each state space system does not need to have a
defined meaning related to the model. These state-space representations are combined into a full
state-space representation of the whole system by stacking the states, defining the state vector χ
as shown in (6.5).

χ =
[

Hx Hẋ χθ
Hy Hẏ χφ ψ z ż χz̈

]T
(6.5)
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The combined state-space representation is shown in (6.6), where the matrices and state vectors
corresponding to each of the four systems are described with the subscript corresponding to the
output they are related to. The derivation is described in further details in Section A.4. As
described in (6.3), expressions for x, y and z are achieved with discrete integrations.



Hx
Hẋ
χθ
Hy
Hẏ
χφ
ψ

z
ż
χz̈



k+1

=



1 Ts 01×4 0 0 01×4 0 0 0 0
0 1 gTsCθ 0 0 01×4 0 0 0 0
0 0 Aθ 0 0 01×4 0 0 0 0
0 0 01×4 1 Ts 01×4 0 0 0 0
0 0 01×4 0 1 −gTsCφ 0 0 0 0
0 0 01×4 0 0 Aφ 0 0 0 0
0 0 01×4 0 0 01×4 Aψ 0 0 0
0 0 01×4 0 0 01×4 0 1 Ts 0
0 0 01×4 0 0 01×4 0 0 1 TsCz̈
0 0 01×4 0 0 01×4 0 0 0 Az̈





Hx
Hẋ
χθ
Hy
Hẏ
χφ
ψ

z
ż
χz̈



k

+

+



0 0 0 0
0 0 0 0
0 Bθ 0 0
0 0 0 0
0 0 0 0
Bφ 0 0 0
0 0 Bψ 0
0 0 0 0
0 0 0 0
0 0 0 Bz̈




φref
θref
ψref
T


k



Hx
Hy
z
φ
θ
ψ



k

=



1 0 01×4 0 0 01×4 0 0 0 0
0 0 01×4 1 0 01×4 0 0 0 0
0 0 01×4 0 0 01×4 0 1 0 0
0 0 01×4 0 0 Cφ 0 0 0 0
0 0 Cθ 0 0 01×4 0 0 0 0
0 0 01×4 0 0 01×4 Cψ 0 0 0





Hx
Hẋ
χθ
Hy
Hẏ
χφ
ψ

z
ż
χz̈



k

(6.6)

Where:
χ• is the state vector of the state-space representation corresponding

to the ARX output •
A• is the system matrix of the state-space representation corre-

sponding to the ARX output •
B• is the input matrix of the state-space representation correspond-

ing to the ARX output •
C• is the output matrix of the state-space representation corre-

sponding to the ARX output •
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6.2. Z Controller

From this description of the drone, it is evident that the system can be partitioned. It is decided
to split it into three systems: one describing the yaw movement of the drone, another describing
the movement in the z direction and a system describing the x and y movement of the drone.
since yaw has been modelled from ψref to ψ, and because the PX4 has a build in controller for
yaw, no control solution is designed for this state.
The following sections presents a control solution for z named z controller and another one for x
and y named x-y controller. These controllers will be designed to run at 20 Hz, corresponding to
the sample rate from the models.

6.2 Z Controller
In this section the control solution for the z height of the drone is analysed, designed and tested.
From Section 6.1 it is known that the acceleration of the drone in z can be controlled through
the thrust input. Furthermore, a state space model of the z system has been presented, which
is derived from an identified ARX model. This ARX model is identified around a thrust value
which makes the drone hover. Therefore, the thrust value has to be added to the control signal
determined by the controller as an operating point. This value is expected to deviate while flying
mainly due to changes in the state of charge in the battery. The derivations from the hover value
are affecting the z system as a disturbance on the input thrust signal.

Bz

dk

∑
z-1

χz
k+1 χz

k

Az

Cz
∑T k

Figure 6.2: Open loop system.

 zż
χz̈


k+1

︸ ︷︷ ︸
χk+1

z

=

1 Ts 0
0 1 TsCz̈
0 0 0


︸ ︷︷ ︸

Az

 zż
χz̈


k

︸ ︷︷ ︸
χk

z

+

 0
0
Bz̈


︸ ︷︷ ︸
Bz

(T k + dk) (6.7)

χk+1
z = Azχ

k
z +BzT

k +Bzd
k (6.8)

Where:
χz is the state vector of the z system
T is the applied thrust signal
d is the thrust input disturbance
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6.2.1 Feedback design
In order to track the z set-point a reference has to be introduced. From (6.3) and (A.30) it is
evident that the open loop transfer function from thrust input T to z is a type 2 system since the
discrete transfer function is having two poles in z = 1. Hence, no integral action in the controller
is needed in order to reach a type 1 system that would yield zero steady-state error to step
inputs. In chapter Chapter 8, an extended Kalman filter estimating all the states in the state
vector χz is designed. The feedback is designed as if the state vector χz is available without
considering the error associated with state estimation. The feedback law is then defined as in
(6.9). An illustration of the closed loop system is shown in Figure 6.3.

Bz

dk

-

-rk

∑

∑

z-1
χz

k+1 χz
k

Az

Cz
∑

Nz

-Kz



z-r
ż
χz̈




k

Figure 6.3: Closed loop system.

T k = −Kzχ
k
z +KzN zr

k (6.9)

N z =
[
1 0 0

]
(6.10)

The matrix N z is designed such that the reference rk is only affecting the feedback of the z state.
With the feedback law defined in (6.9) the closed loop state space description becomes as in
(6.11)

χk+1
z = (Az −BzKz)χkz +BzKzN zr

k +Bzd
k (6.11)

Two widely known ways of designing the feedback matrix Kz are the use of pole placement
or Linear Quadratic Regulators (LQR). It is preferred to design it as a LQR since no direct
requirements for the pole placement exist. However, a few requirements can be formulated for
the size of the states and input which suits the LQR design method.
The quadratic cost function in (6.12) is considered in order to design the gain matrix Kz. The
matrixKz is given by (6.13). Where the matrix S is the unique positive definite solution solution
to the discrete time Riccati equation. The matrices Kz and S are found with the MATLAB
function dlqr.

J =
∞∑
k=0

(
χk,TQχk + uk,TRuk

)
(6.12)

Kz = (R+BT
z SBz)−1BT

z SAz (6.13)
S = Q+AT

z SAz −AT
z SBz(R+BT

z SBz)−1BT
z SAz
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Bryson’s rule is used as a starting point for designing the weighting matrices Q and R in the
cost function in (6.12). The Brysons rule is defined as.

Qii = 1
maximum acceptable value of χ2

i

i ∈ {1, 2, . . . , l} (6.14)

Rjj = 1
maximum acceptable value of u2

i

j ∈ {1, 2, . . . ,m} (6.15)

Where:
l is the number of states
m is the number of inputs

In Appendix A, it is found that the thrust value is scaled between 0 and 1. Furthermore,
the hover thrust value is found to be 0.587. This means that the controller can output approxi-
mately ±0.5 before hitting saturations. The maximum acceptable input is set to 0.25 since it is
not desirable to apply either full thrust or zero thrust. This is not desirable because this would
introduce non-linearities in the system that has not been modelled. In Section 2.3 it is found that
the drone is supposed to fly in straight lines between way-points. This means that there is no
upper limit for the largest expected step size the z controller can experience. Without any upper
step size limit tracking errors can become arbitrarily large, resulting in large control signals and
possible actuator saturations. With the z controller this would likely result in motors either
turning off or running at full speed, thereby leaving no actuation room for the other controllers.

A saturation on the tracking error is then introduced in the feedback path in order to handle
large position steps. It is decided to saturate the tracking error to 1 m, which is then used as
the maximum acceptable value of the state z. There is no real requirement on the maximum
acceptable velocity or acceleration, leading the Q and R matrices to be designed with the above
consideration on z. These are defined in (6.16)

Q =

1 0 0
0 0 0
0 0 0

 R = 1
0.252 (6.16)

With the weighting matrices in (6.16) the feedback matrix F becomes as in (6.17)

Kz =
[
0.2335 0.1838 0.1367

]
(6.17)

In figure Figure 6.4, a simulated step response of the z controller can be seen, where both the
response from the reference and from the disturbance are presented. From this figure it can be
seen that the controller has unity gain on steps in the reference. But is can also be seen that the
controller is not able to reject stationary disturbances on the thrust input. Furthermore it can
be seen that the control signal is within the range of ±0.25 at all time on a step of 1 m which is
the largest step the controller can experience due to the saturation on the tracking error.

33 / 172



Chapter 6. Controller

0

0.5

1

P
os
it
io
n
z
[m

]

0

0.5

1

V
el
o
ci
ty
ż
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Figure 6.4: Simulation of step response of a reference change of 1 m and a change in disturbance
of 0.1 with the designed controller.

The design of the z controller is done with the assumption that the largest step is 1 m but as
discussed above there is no upper limit on the applied steps. When a large reference step is
applied, the feedback loop is changed as illustrated in Figure 6.5 to model the saturation. The H
matrix effectively removes the position feedback and sets tracking error to the constant saturation
value. With the changed feedback the closed loop equation becomes the one shown in (6.18).

Bz

dk

-

-rmax

∑

∑

z-1
χz

k+1 χz
k

Az

Cz
∑

H

Nz

-Kz



-rmax

ż
χz̈




k

Figure 6.5: Closed loop system when large steps is applied.

χk+1
z = (Az −BzKzH)χkz +BzKzN zrmax +Bzd

k (6.18)

H =

0 0 0
0 1 0
0 0 1


Where:

rmax is the maximum allowed tracking error [m]
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In Figure 6.6 the effect of the saturation implemented on the tracking error of the z controller
is shown when a large step in the reference is applied. In the saturated situation the drone is
accelerating to a certain velocity determined by the gain matrix Kz and the designed maximum
tracking error rmax. From the figure it can be seen that the controller is not generating large
control signals even when large steps in references are applied due to the saturation of the
tracking error. The effect of the designed saturation is that the drone will fly with a constant
saturated velocity towards the set-point, as seen in Figure 6.6. When the error becomes less than
the maximum tracking error, rmax, in this case set to 1 m, the velocity will slowly decrease and
the position will settle at the reference, similar to the behaviour shown in Figure 6.4 with steps
smaller than rmax.

0

1

2

P
os
it
io
n
z
[m

]

0

0.5

1

V
el
o
ci
ty
ż
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Figure 6.6: Simulation of a step response of a large step in reference, rmax = 1 m.
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6.2.2 Disturbance rejection
In the previous section the feedback gain Kz is designed. In this section it is investigated how
the disturbance from the time varying thrust value can be rejected. It is decided to model this
disturbance with an exogenous system like illustrated on Figure 6.7.

Bz

-
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-rk
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
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k
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Figure 6.7: Closed loop system with exosystem and disturbance rejection.

These disturbances can be rejected by changing the feedback law defined in (6.9) to (6.19)

T k = −Kzχ
k
z +KzN zr

k − dk (6.19)

The closed loop equations with the feedback law defined in (6.19) become

χk+1
z = (Az −BzKz)χkz +Bzd

k −Bzd
k +BzKzN zr

k (6.20)
χk+1
z = (Az −BzKz)χkz +BzKzN zr

k (6.21)

But since the disturbance dk is unknown and cannot be measured it has to be estimated by the
extended Kalman filter. The closed loop equations then become

χk+1
z = (Az −BzKz)χkz +Bzd

k −Bzd̂
k +BzKzN zr

k (6.22)
χk+1
z = (Az −BzKz)χkz +BzKzN zr

k +Bz(dk − d̂k) (6.23)

If (6.23) is compared with (6.11), it is apparent that the closed loop system with the feedback law
defined in (6.19) now is affected by the estimation error dk − d̂k instead of the disturbance dk.
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6.2.3 Test
The feedback gain is designed in MATLAB using the linear model described in Section 6.1. Before
test the controller has to be implemented as a ROS node in the ROS environment, where the
communication with the PX4 controller is performed through the MAVROS node as described
in Chapter 4. Before testing the controller in a real flight with the actual drone, the control
algorithm is developed and tested in the Gazebo simulation environment described in Appendix J.
This simulation environment allows to test the implemented control algorithm on a simulated
drone before performing real flights. Once the controller implementation is found to be working
as expected, it is tested in the real drone. The result of this test is compared with a simulation
of the linear model used for design and the simulated drone within GAZEBO. A flight test is
designed for the drone to evaluate the controller, consisting of different set-point references for
the drone to track. The flight is performed in a Vicon-equipped environment and the data is
extracted from the Vicon system measurements.
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Figure 6.8: Comparison between flight data and simulations. Data in black is the defined
setpoint for z, data in red is the linear model simulation, data in blue is the flight extracted data
and data in green is the Gazebo simulation data.

The set-points are designed to be 1 m steps in order to check the performance of the controller
in the largest input step allowed. It can be seen from Figure 6.8 that the drone tracks the set
reference provided. In Figure 6.8 the comparison between the different performances is shown. It
can be seen that, although the simulated drone in Gazebo is not the same one used during the
real world flight, as described in Appendix J, the controller performance is similar in both cases,
reaching the set-points as expected from the linear simulation.
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6.3 X-Y Controller
In this section the control solution for the x and y position is presented. Similar to what is
described for z controller in Section 6.2, the objective of this x and y controller is to reach
coordinate references from an already defined path as presented in Section 2.3. It is known from
Section 6.1 that when a frame aligned with the heading of the drone is considered, the system
representation for x and y is decoupled. The open-loop system considered for the design of the
controller is shown in (6.24), which corresponds to the decouplings related to x and y of the
overall system presented in (6.6).

Hx
Hẋ
χθ
Hy
Hẏ
χφ



k+1

=



1 Ts 01×4 0 0 01×4
0 1 gTsCθ 0 0 01×4
0 0 Aθ 0 0 01×4
0 0 01×4 1 Ts 01×4
0 0 01×4 0 1 −gTsCφ

0 0 01×4 0 0 Aφ





Hx
Hẋ
χθ
Hy
Hẏ
χφ



k

+

+



0 0
0 0
0 Bθ

0 0
0 0
Bφ 0


[
φref
θref

]k


Hx
Hy
φ
θ


k

=


1 0 01×4 0 0 01×4
0 0 01×4 1 0 01×4
0 0 01×4 0 0 Cφ

0 0 Cθ 0 0 01×4





Hx
Hẋ
χθ
Hy
Hẏ
χφ



k

(6.24)

6.3.1 Feedback design
In order to track x and y set-points, a reference needs to be introduced in the system. From
(6.3), (A.26) and (A.25) it can be seen that the transfer functions for these coordinates describes
a type 2 system, meaning that no integral action is needed in the control structure in order to
track step references with no steady-state error.
However, the set-points for x and y provided as references to the system are defined in a path
described in EF, while the model for x and y are defined in HE. This means that in order to
design a linear controller that forces the states of the system to track the set-points, the two
frames need to match. This is obtained starting by rotating the reference from the EF to the
HF. This system description is shown in Figure 6.9.

Figure 6.9: State-space description with applied rotation to the reference
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Since the applied rotation is not related to the states, the reference to the system can be given
in the HF, Hr, meaning that for the controller structure the rotation does not need to be taken
into account. This rotation in the reference is shown in (6.25). The system to consider is then
shown in Figure 6.10.

Hr = H
EREr =

[
cosψ sinψ
− sinψ cosψ

] [
Exref
Eyref

]
(6.25)

Figure 6.10: State-space description with rotated reference

The chosen control structure for the system consists in designing a feedback gain matrix for the
system described in (6.24) which receives references transformed into the HF.
The feedback is applied to an estimation of the states, implying that they need to be estimated
in the HF too. In Chapter 8 an extended Kalman filter is designed for the estimation of the full
state vector, which is forced then to provide the estimation in the HF.
It is decided to take the LQR approach for the feedback design in the same way that the z
controller is calculated in Section 6.2. First, the N matrix for the reference is designed to only
affect the x and y states. The N matrix is defined in (6.27) with the reference vector defined in
(6.26).

Hr = r =
[
xr
yr

]
(6.26)

N =
[

1 0 01×4 0 0 01×4
0 0 01×4 1 0 01×4

]
(6.27)

Assuming that the EKF provides the controller with a correct estimated value of the states, the
feedback gain is calculated with the use of the Bryson’s rule for the weight matrices description.
The same problem described in the z controller derivation is encountered here: there are no real
limitations on the step sizes of the references. It is therefore decided to use the same saturation
strategy on the tracking error as the one described for the z controller.

The controller is designed considering a maximum step size of 1 m. This is achieved by taking
the specifications into account in the weight matrix for the states, Q. This matrix is designed as
a diagonal matrix with values only in the x and y states. Since the inputs to the system are
angular references for roll and pitch, the maximum values allowed for these are decided to take
into account the small angle approximation used for deriving the simplified model (Section A.2).
The maximum value allowed for the roll and pitch references is decided to be 0.2 rad.

Q = diag
(
1, 0,01×4, 1, 0,01×4

)
R =

[
1

0.22 0
0 1

0.22

]
(6.28)
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The controller gain can be separated into the gains affecting the states related to x and the ones
related to y, and with the weight matrices described in (6.28), the feedback gain found is shown
in (6.29).

K =
[
Kx Ky

]
Kx =

[
0 0 0 0 0 0

0.1910 0.2438 0.0912 −0.0358 −0.0315 −0.0092

]

Ky =
[
−0.1908 −0.2412 0.0929 −0.0246 0.0004 0.0058

0 0 0 0 0 0

] (6.29)

In order to include a consideration for when the steps in the set-points are bigger than 1 m in
the design, the same approach used for the z controller in Section 6.2.1 is used. The position
feedback is removed so the error tracked is saturated. By doing this, the controller will behave
as designed for the maximum step size instead of increasing the velocity of the drone.

The response of the system to a 1 m reference is shown in Figure 6.11, where the behaviour of x,
y, ẋ, pitch, ẏ and roll is presented.
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Figure 6.11: Step response of x, ẋ, pitch, y, ẏ and roll to a reference of 1 m to x and y
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The response to the system when the saturation on the tracking error is applied is shown in
Figure 6.12, where the velocities ẋ and ẏ saturate since the reference is set to the maximum value.
This figure shows a constant velocity behaviour of the system. Once the tracking error is below
the maximum value, the system is brought back to the previous situation shown in Figure 6.11.
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Figure 6.12: Step response of x, ẋ, pitch, y, ẏ and roll to a step on x and y references when
the saturation on the error is applied.

6.3.2 Test
Before testing the designed controller in real world the controllers performance is tested in
simulation, in the same way as described for the z controller. This is done by using the linear
model with which it has been designed and the Gazebo simulation. Once the implementation of
it in ROS is found to be correct, a real test for the drone needs to be designed.
During the whole test, the already designed z controller from Section 6.2 is used to keep the
drone in a constant altitude.

The experiment is performed with yaw fixed to 0 rad. Once the drone is in a held height, a set
of references is given to the it, describing a square in the x-y plane. This includes a set-point in
the centre of the square in order to use the controller in both directions at the same time.
Figure 6.13 shows the performance of the drone when these set-points are given. It can be seen
that the actual performance differs from the Gazebo one. The simulated controller reaches the
set-points whereas the one implemented in the real drone does not actually reach them.
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Figure 6.13: Comparison between flight data and simulation. Data in black is the defined
setpoint for x and y, data in red is the linear model simulation, data in blue is the flight extracted
data and data in green is the Gazebo simulation data.

In Figure 6.14 a 2D plot of the flight is shown. The blue straight lines shown are the references
given to the drone and the scattered dots are the measurements taken from the flight and the
Gazebo simulation. It can be seen from it that the drone approaches the vertexes of the defined
square, although the path taken is not the one defining the square. This is due to different
performance of the designed controllers for x and y. The performance of the controllers is deemed
to be satisfactory since they are only designed to reach set-points and not to track the trajectory
defined by the set-points. Further action has to be taken if it is important to stay closer to the
trajectory defined by the set-points.
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Figure 6.14: 2D plot of the x and y measurements taken from the flight compared to the Gazeo
simulation.
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7 FastSLAM 2.0 estimator

This Chapter describes how the FastSLAM 2.0 algorithm, in the sequel referred to as FastSLAM,
is used to estimate a part of the drone’s state vector and the mapM . In Section 5.2 it is decided
that FastSLAM should be used to estimate the pose vector defined in (7.1) and the map defined
in (7.2).

s = [x, y, z, ψ]T (7.1)

M = [l1, l2, . . . , lN ]T (7.2)

Where:
x is the drone’s x coordinate in the Earth frame
y is the drone’s y coordinate in the Earth frame
z is the drone’s z coordinate in the Earth frame
ψ is the drone’s yaw angle in the Earth frame
N is the number of landmarks at time k
li is a landmark

The N landmarks is in this project chosen to be point landmarks described in (7.3)

li = [xl, yl, zl]T (7.3)

A summary of the FastSLAM algorithm for a general SLAM problem is given in Section 7.1. The
motion and measurement models needed for the implementation of the algorithm are presented
in Section 7.2 and Section 7.3. An overview of the implementation of the algorithm used in this
project is presented in Section 7.5. Finally test results of the implemented algorithm are shown
in Section 7.6.

7.1 Algorithmic summary
This section is intended to provide a summary of the FastSLAM algorithm. The full details of
the algorithm can be found in [13]. FastSLAM was proposed as a solution to the SLAM problem
in [14] in 2003 as an improvement of the original FastSLAM algorithm [22]. The purpose of the
algorithm is to estimate the a posteriori probability of the map, M , and robot path, s1:t. A
SLAM problem of the form in (7.4) is assumed.

p
(
s1:k,M |z1:k,u1:k

)
(7.4)

Where:
s1:k is the robot path from time 1 to k
M is a map of the environment
z1:k is all relative measurements between the robot and landmarks

in the map from time 1 to k
u1:k is all inputs to the robot from time 1 to k
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The algorithm furthermore assumes that only relative measurements between the drone and each
observed landmark are available [13]. Using the definition of conditional probability, see (E.1),
the PDF in (7.4) can be rewritten to (7.6).

p
(
s1:k,M |z1:k,u1:k

)
= p

(
s1:k|z1:k,u1:k

)
p
(
M |s1:k, z1:k,u1:k

)
(7.5)

= p
(
s1:k|z1:k,u1:k

)
p
(
M |s1:k, z1:k

)
(7.6)

Where the u1:k, can be dropped in the PDF for the map since the map conditioned on the path
does not depend on the input to the robot. FastSLAM furthermore assumes that landmarks
are conditional independent given the path of the robot. Thereby the posterior (7.6) can be
factorized as

p
(
s1:k,M |z1:k,u1:k

)
= p

(
s1:k|z1:k,u1:k

) N∏
i=1

p
(
li|s1:k, z1:k

)
(7.7)

as shown in [13]. In words (7.7) simply states that if the true path s1:k is known then information
about one landmark will not yield any information about any other landmarks. This is of
course only valid due to the assumption about conditional independence between landmarks, and
the assumptions about only using relative measurements between the robot and each observed
landmark.
The factorisation in (7.7) can be exploited by maintaining low dimensional filters for each factor
in (7.7). FastSLAM uses a particle filter, which utilizes an EKF for each particle to obtain
an estimate of its proposal distribution, to estimate the target distribution p

(
s1:k|z1:k,u1:k

)
.

Furthermore FastSLAM uses N extended Kalman filters to estimate p
(
li|s1:k, z1:k

)
for each

particle in the particle filter since the landmarks, li, are conditioned on the robot’s path. Thus if
the particle filter has P particles, then there is a total of P ·N EKF’s.
In the following, subscript [p] will be used to indicate the index of the p’th particle. Thereby each
particle, s1:k

[p] , in the particle filter is associated with a set of Kalman filters. Each Kalman filter

is maintaining an estimated mean, lk|k
i,[p], and covariance, Cov

(
l
k|k
i

)
[p]

for a single landmark in

the map based on the estimated path of the specific particle.

The FastSLAM algorithm assumes a motion model and a measurement model on the form

sk = f
(
sk−1,uk−1

)
+wk−1 (7.8)

zkli = h
(
sk, li

)
+ vk (7.9)

As a result of this motion model and measurement model and some approximations used to
derive the equations of the algorithm, the equations used by the algorithm do not depend on the
full path taken by each particle, s1:k

[p] , but only the current pose, sk[p], and the previous pose, sk−1
[p] .

Therefore the algorithm do not need to store information about the full path. In the following,
"a particle" is thus used to refer to a pose, sk[p], instead of the full path, s1:k

[p] .
The following presents the FastSLAM algorithm, assuming that the reader is familiar with the
concepts of Extended Kalman Filter, described in Section E.5, sequential Extended Kalman
Filter, described in Section E.6, and particle filters, described in Section E.8.
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To explain the steps of the algorithm, additional symbols are introduced:
zki,ex is the i’th measurement of existing landmarks
zkj,new is the j’th measurement of a new landmark
sk[p] is the pose estimate of the p’th particle after the i’th iteration

of the sequential Kalman filter

The algorithm is presented with a summery of the steps, followed by an example going through
these steps. This example is illustrated in Figure 7.1. The algorithm can be summarized as
follows:

1. Initialize the filter with a set of particles, s0
[p], distributed according to the initial guess of

the distribution p
(
s0
)
.

2. For k = 1, ... do

Generate proposal particles approximately distributed according to the proposal
distribution

p
(
sk|uk, sk−1, zk

)
(7.10)

by
(a) Predicting each particle forward in a similar way as a sequential extended Kalman

filter based on (7.8), to obtain s̄k0,[p] and Cov
(
sk0,[p]

)
, but with the covariance of the

initial pose put to zero. That is Cov
(
sk−1
[p]

)
= 0.

(b) For each particle process each measurement of landmarks already initialized in the
filter at time k, zki,ex for i = 1, ..., I, through the update step of a sequential Extended

Kalman Filter, to obtain an estimate of the mean, s̄k
I,[p], and covariance, Cov

(
sk
I,[p]

)
,

of the pose at time k, sk.
(c) Randomly draw one proposal particle, s̃k[p], from each of the estimated normal

distributions

s̃k[p] ∼ N
(
s̄k
I,[p],Cov

(
sk
I,[p]

))
(7.11)

The proposal particles s̃k[p], should now approximately be distributed according to
(7.10). Thus proceed and do

(d) Calculate an importance weight, q[p], for each particle.

(e) For each particle update the estimate of the landmarks already initialized in the filter,
based on zki,ex for i = 1, ..., I, with I being the number of measurements of existing
landmarks.

(f) For each particle add new landmarks to the map by using each measurement of new
landmarks at time k, zkj,new for j = 1, ..., J , with J being the number of measurements
of new landmarks.

(g) Perform importance resampling on the particles.
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A more thorough description of step 2a/2b, 2d and 2e/2f, with the equations needed for imple-
mentation, can be found in Section E.9.1, Section E.9.2 and Section E.9.3 respectively. More
details about importance weights and importance sampling in general can be found in Section E.7.
The authors of the FastSLAM algorithm do not specify any specific algorithm to perform the
resampling step, but state that it should be chosen as a compromise between accuracy and ease
of implementation.

The steps of the algorithm are illustrated for a simple one dimensional case with 6 particles and
only one known landmark at time k, in Figure 7.1 on the next page. In the example starting at
time k − 1, particle 1, 2 and 3 have the same value, and 4, 5 and 6 the same.

In step 2a the prediction step of the sequential EKF is performed.

In step 2b the correction step of the sequential EKF is performed based on the current estimate
of l1 within the particle and a relative measurement of l1.

In step 2c particles are drawn according to normal distributions with the mean and covariances
estimated by the sequential EKFs.

In step 2d importance weights are assigned to the particles. Notice how particle 1 and 2 are
assigned very small weights.

In step 2e every Extended Kalman Filter estimating the position of l1 for each landmark is
updated.

In step 2f a new landmark is added to the map of each particle, based on the measurement of
the new landmark and the inverse measurement model.

In step 2g resampling is performed, causing s̃k[1] and s̃
k
[2] to be deleted and s̃k[4] and s̃

k
[5] to be copied.

As described above, the FastSLAM algorithm needs to keep track of N Kalman filters for each
particle within the particle filter. Each of these Kalman filters are described by a mean and
covariance, potentially leading to a lot of data that has to be stored for each particle.
Some particles will end up storing the same mean and covariances of the landmarks when no
measurements of those landmarks are available at time k, since the particles are copied in the
resampling step. This is due to the update step where the mean and covariance is only updated
for the landmarks of which measurements are available at time k.
To exploit this property the inventors of the FastSLAM algorithms proposed to use a binary tree
to store the means and covariances of the Kalman filters, by which data common to particles
could be shared.
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s̄k0,[p] = f(sk–1[p] , u
k-1)

2) Update step of EKF
based on measurements
li

1) Prediction step of EKF
based on motion model

sk-1[p={1,2,3}]

sk-1[p={4,5,6}]

p(s1:k|z1:k, u1:k)

N
(
l1,[p={4,5,6}],Cov(l1,[p={4,5,6}])

)N
(
l1,[p={1,2,3}],Cov(l1,[p={1,2,3}])

)

3) Draw random samples
according to

N
(
s̄k1,[p],Cov

(
s̄k1,[p]

))

4) Assign importance
weights

5) Correct landmark
estimates

6) Place new landmarks

7) Resampling based on
importance weights

N
(
s̄k0,[p],Cov

(
s̄k0,[p]

))

N
(
s̄k1,[p={1,2,3}],Cov

(
s̄k1,[p={1,2,3}]

))
N

(
s̄k1,[p={4,5,6}],Cov

(
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))

N
(
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N
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Figure 7.1: Illustration of the steps of the FastSLAM algorithm for a simple one dimensional
case, with 6 particles.
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7.2 Simplified Motion Model
The FastSLAM implementation needs a motion model to calculate a proposal distribution to
be used as part of the prediction step within the particle filter. As described in Section 5.2.6
it is decided that FastSLAM should be using a simplified motion model instead of an ARX
based motion model to keep the number of estimated states low. The simplified motion model
can be designed as a kinematic model taking the translational velocities from the ARX model
state vector, see Section 6.1, estimated by an external Extended Kalman Filter as described in
Chapter 8. Let these velocity estimates of the drone relative to the heading frame be denoted Hv.

Hv =


Hˆ̇x
Hˆ̇y
Hˆ̇z

 (7.12)

For the yaw angle however there is no velocity estimate why it is decided to design the motion
model such that a yaw angle difference can be provided as input.

∆ψk = ψk − ψk−1 (7.13)

Whenever the FastSLAM algorithm is executed the difference between the current yaw angle
estimate from the EKF and the previous yaw angle estimate from last time the algorithm ran, is
calculated. This yaw angle difference, ∆ψk, is concatenated with the velocity estimates to form
the motion model input vector, u.

u =
[

Hv
∆ψ

]
(7.14)

The state vector of FastSLAM, see (7.15), is chosen to include only the heading angle of the
drone and the full position vector relative to the GOT coordinate system defined in the Earth
frame of which the FastSLAM coordinate system should align to.

s =


x
y
z
ψ

 (7.15)

According to (7.8) the motion model should be on the following form:

sk = fs
(
sk−1,uk−1

)
+wk−1 (7.16)

where the Gaussian noise variable w as input described by

wk−1 ∼ N
(

04×1,Cov
(
wk−1

))
(7.17)

The motion model will thus describe the distribution:

p(sk | u1:k, s1:k−1) (7.18)

As the motion model is a discrete kinematic model one can expect modelling errors residing from
discretization to result in noise on the state prediction. Furthermore any noise in the velocity
estimates used as inputs, u, will also affect the state prediction.
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The motion model will take the most recent velocity estimate from the Extended Kalman Filter,
which is running at a faster rate, and use this as input for the prediction. Using a more recent
velocity estimate than the velocity at the previous time-step, vk−1, will also result in small
prediction errors. It is assumed though that the prediction error caused by noise in the velocity
estimates will be much greater than the modelling errors caused by discretization. Therefore
noise on the inputs of the motion model, as shown in (7.19), will be considered instead of the
additive noise as assumed in the FastSLAM 2 algorithm, see (7.8).

sk = fs

(
sk−1,

(
uk−1 +wk−1

))
(7.19)

To make the motion model fit with FastSLAM 2, it is decided to make a Taylor series expansion
to linearise the motion model around wk−1 = 0, in a similar fashion as done for the Extended
Kalman filter presented in Section E.5. The approximation becomes

fs

(
sk−1,

(
uk−1 +wk−1

))
≈ fs

(
sk−1,uk−1

)
+
fs
(
sk−1,uk−1

)
∂wk−1

[
wk−1 − 04×1

]
= fs

(
sk−1,uk−1

)
+ Fww

k−1

= fs
(
sk−1,uk−1

)
+ w̃k−1

(7.20)

Based on Section E.3 and with the input noise modelled as a Gaussian according to (7.17) it
follows that:

w̃k−1 ∼
(

04×1, FwCov
(
wk−1

)
F T
w

)
(7.21)

This transforms the input noise into an additive noise that can be used by the FastSLAM 2
algorithm. The covariance of this input noise, wk−1, is a combination of the covariance of the
velocity estimates, taken from the external Extended Kalman Filter, and the noise of the yaw
angle difference. As the yaw angle is not correlated with the velocity estimates because these
are in the local heading frame, the variance of the yaw angle difference can just be calculated
from the variance of the current and previous yaw angle estimate, being described by Gaussian
random variables. The variance thereby become:

Var
(
∆ψk

)
= Var

(
ψk
)

+ Var
(
ψk−1

)
(7.22)

This allows the actual motion model input covariance to be determined at each timestep and
included within FastSLAM.

Cov
(
wk−1

)
=

Cov
(
vk−1

)
03×1

01×3 Var
(
∆ψk−1

)
 (7.23)

As the heading frame only tracks the yaw angle but does not follow the roll and pitch angles,
the motion model will only have to consider the velocity inputs and the previous yaw angle.
Assuming small yaw angular velocities and assuming that the FastSLAM implementation is run
at a sufficiently fast rate such that the yaw angle seems almost constant between samples, then
the motion model can be simplified even further by assuming that the drone is flying in straight
lines between samples. The motion model thereby only needs to rotate the velocity input vector
by the previous yaw angle according to (A.3), and integrate it using the time passed since the
previous sample, ∆tk, resulting in a new pose prediction. The simplified motion model is shown
in (7.24).

fs

(
sk−1,

(
uk−1 +wk−1

)
,∆tk

)
= sk−1 +

[
E
H
Rψk−1∆tk 0

0 1

] (
uk−1 +wk−1

)
(7.24)
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where

E
H
Rψk−1 =

cosψk−1 − sinψk−1 0
sinψk−1 cosψk−1 0

0 0 1

 (7.25)

This kind of simple kinematic motion model allows the sample rate to vary as the model is not
discretized for any specific sample rate but instead includes the integration interval, ∆tk.

7.2.1 Motion model Jacobian
To be able to calculate how noise from the velocity estimates affects the predicted states, a
Jacobian of the predicted states with respect to the noise input is derived in (7.26). This Jacobian
will be included as part of the Extended Kalman filters correcting the proposal distribution
within FastSLAM.

Fw(sk−1,∆tk) = ∂fs
∂wk−1 =


∆tk cosψk−1 −∆tk sinψk−1 0 0
∆tk sinψk−1 ∆tk cosψk−1 0 0

0 0 ∆tk 0
0 0 0 1

 (7.26)

7.3 RGB-D Measurement Model
The RealSense R200 RGB-D camera on the Intel Aero drone is capable of providing an RGB
image and a depth image, see Appendix F. As described in Section 3.3.1 ArUco markers are
put up in the environment and captured by the RGB camera. Using the ArUco feature detector
algorithm, described in Appendix H, a list of pixel coordinates of detected markers, px,i and
py,i, and their unique identifiers i, are determined. Using the pixel location of the detected
markers, a corresponding depth value to each marker, d, is extracted from the depth image.
FastSLAM needs a measurement model of the RGB-D camera and the ArUco marker detection
to calculate predicted measurement vectors of current landmarks within the map, and an inverse
measurement model to be able to insert landmarks into the map based on measurements.

Let the RGB-D camera measurement vector at time k corresponding to marker i be denoted zkc,i
defined according to (3.1). Within this section a measurement model, shown in (7.27), describing
the projection from physical landmark positions to projected pixel coordinates and depth values
is developed based on the pin-hole camera model. The model will consider additive noise on the
measurement vector as expected by the FastSLAM in (7.9).

zkc,i = hc(sk, φk, θk, li) + vk (7.27)

Where:
zkc,i is the camera measurement vector at time k
sk is the pose of the drone at time k
φk is the roll angle at time k
θk is the pitch angle at time k
li is the landmarks position vector
vk is the measurement noise at time k
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A loosened notation will be used throughout the section by letting all model equations be defined
for a specific marker, i and at time k. The measurement vector is thus defined as:

zc =

xcyc
d

 (7.28)

7.3.1 Camera intrinsics
The pin-hole camera model described in Appendix G models the projection behaviour of a lens,
describing how a landmark relative to the camera viewpoint is projected onto the image plane.
Unfortunately, the actual projection starts to deviate from the pin-hole model when projected
objects are close to the edges of the image. This behaviour is known as lens distortion and it is
the case with the RGB camera of the R200 camera, as described in Appendix F. The distortion
has been modelled and calibrated by Intel using a Plumb Bob model [23] which allows a one-way
transformation from undistorted pixel coordinate to distorted coordinate. As only a one-way
transformation is possible, the distorted image captured by the camera can only be undistorted
through an iterative process. It is therefore recommended to do any "pin-hole model"-based
projection and deprojection using only the depth image or aligned images to avoid an iterative
distortion-removal algorithm [24].

As described in Appendix F, the depth image is on the other hand based on a rectified disparity
map calculated from the stereo images coming from the IR-camera pair on the R200 camera from
where distortion has been removed. The depth image contains projected depth values to objects
in the environment where the projection happens on to the plane of the disparity map given the
intrinsics of the stereo cameras. The pin-hole model can then be used to convert any measured
depth value within the depth image back into a world coordinate relative to the location and
orientation of the camera.

The four parameters defining the intrinsics used within (G.6) in Appendix G can be extracted for
both the RGB and depth camera on the R200 camera and would thus not need to be determined.
Both the RGB image and depth image are configured to a resolution of 320 × 240 pixels and
with the help of the rectification process described in Appendix F in Section F.5, the two images
are aligned. The resulting aligned images share the same intrinsics, are non-distorted and are
physically located on top of each other thereby having no extrinsic between them. This allows
the pixel coordinate of a detected marker within the RGB image to be used in the depth image
to extract the measured depth to the marker as described in Section 4.3.

7.3.2 Extrinsic transformation
The pin-hole camera model projects the environment relative to the position and orientation
of the camera, why such variables need to be included in the measurement model. To project
landmarks within the world into the image plane, the landmarks have to be transformed from
the world frame (earth frame) into the camera frame. To make the derivation easier to follow,
an inverse transformation from camera frame into world frame is derived in this subsection.
The camera frame has its z-axis pointing in the viewpoint direction, its x-axis pointing right and
its y-axis pointing down as shown in Figure G.2. The body frame of the drone, to which the
camera is rigidly attached, has its x-axis pointing forward as described in Section 6.1. Assuming
that the z-axis of the camera is perfectly aligned with the x-axis of the drone and that the camera
is aligned with the horizontal axis of the drone, the rotation between the camera frame and the
body frame is shown in (7.29).
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B
CR = Rz(−90◦)Rx(−90◦) =

 0 0 1
−1 0 0
0 −1 0

 (7.29)

Where:
B
CR is the rotation matrix from the camera frame to the body frame
Rz(α) is a rotation matrix of an angle α around the x axis
Rx(α) is a rotation matrix of an angle α around the z axis

The camera itself is not located in the center of the drone why a small extrinsic transformation
has to be included as part of the transformation between the camera frame and the body frame.
Let the location of the camera within the body frame be denoted BpC =

[
xoff, yoff, zoff

]T
,

defining the translational camera offset. The camera to body frame transformation is then
described by:

B
CT =

[
B
CR BpC
0 1

]
=


0 0 1 xoff
−1 0 0 yoff
0 −1 0 zoff
0 0 0 1

 (7.30)

The body frame of the drone is transformed according to the drone pose, Es =
[
x y z ψ

]T
and

the roll and pitch angles, Eφ and Eθ, taken as an input from the Extended Kalman filter estimator.
In Section A.1, the rotation matrix, E

BR, concatenating the roll, pitch and yaw rotations from
body frame to earth frame is derived resulting in the rotation function:

E
BR(φ, θ, ψ) =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (7.31)

Combining this rotation matrix with the translational part of the pose vector results in the
transformation matrix from earth frame to body frame:

E
BT =

[
E
BR Esxyz
0 1

]
(7.32)

The final transformation from camera frame to earth frame is found by concatenating these two
transformations:

E
CT = E

BTB
CT =

[
E
BR Esxyz
0 1

] [
B
CR BpC
0 1

]
=
[

E
BRB

CR E
BRBpC + Esxyz

0 1

]
(7.33)

As the last step of the extrinsic derivation, the inverse transformation has to be found, as
a transformation from world landmarks into the camera frame is needed such that they can
be projected on to the image plane. Using the fact the transformation in (7.33) is an affine
transformation and the fact that E

BRB
CR is invertible, since E

BRB
CR is a rotation matrix, the inverse

of E
CT is found by [25]:

C
ET = E

CT−1 =

(E
BRB

CR
)T

−
(

E
BRB

CR
)T (

E
BRBpC + Esxyz

)
0 1

 (7.34)
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7.3.3 Measurement model
With both a model of the frame transformation (extrinsics) and a model of the projection on to
the image plane (intrinsics), a final measurement model can be found by combination. A given
landmark within the world, Eli, defined by its location Exl, Eyl and Ezl is transformed into the
camera frame by applying the inverse transformation matrix found.

[
Cli
1

]
=


Cxl
Cyl
Czl
1

 = C
ET
[

Eli
1

]
(7.35)

Writing out (7.35) gives:

Cli =
(

E
BRB

CR
)T Eli −

(
E
BRB

CR
)T (E

BRBpC + Esxyz
)

= B
CRT E

BRT
(

Eli − E
BRBpC − Esxyz

)
= B

CRT E
BRT

(
Eli − Esxyz

)
− B

CRT BpC

= C
ER
(

Eli − Esxyz
)
− C

BRBpC

(7.36)

Where the rotation C
ER is defined by the function:

C
ER(φ, θ, ψ) =

(
E
BRB

CR
)T

=

−cψsθsφ + sψcφ −sψsθsφ − cψcφ −cθsφ
−cψsθcφ − sψsφ −sψsθcφ + cψsφ −cθcφ

cψcθ sψcθ −sθ

 (7.37)

The coordinates of a given landmark within the current camera frame are found by using (7.36)
corresponding to:

Cxl = yoff +
(
−cψsθsφ + sψcφ

)
(xl − x) +

(
−sψsθsφ − cψcφ

)
(yl − y)− cθsφ(zl − z)

Cyl = zoff +
(
−cψsθcφ − sψsφ

)
(xl − x) +

(
−sψsθcφ + cψsφ

)
(yl − y)− cθcφ(zl − z)

Czl = −xoff + cθcψ(xl − x) + cθsψ(yl − y)− sθ(zl − z)

(7.38)

Combining (G.6) and (G.7) from Appendix G for the image plane projection using the intrinsics
and the equations for the transformed landmark coordinate within the camera frame, (7.38), the
measurement vector components become:

xc = ax
Cxl
Czl

+ x0

yc = ay
Cyl
Czl

+ y0

d = Czl

(7.39)

7.3.4 Inverse measurement model
The measurement model presented previously models how a landmark within the world is
projected on to the image plane. To be able to insert new landmarks into the world when
detected, an inverse measurement model is needed. The inverse measurement model takes in a
measurement, zc, containing a detected pixel coordinate, (xc, yc) and depth, d, and performs a
deprojection, shown in (7.40).
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Cxl = d
xc − x0
ax

Cyl = d
yc − y0
ay

Czl = d

(7.40)

When the detected landmark has been deprojected into the camera frame, the landmark is
transformed in reverse order into the earth frame as shown in (7.41).

Eli = Esxyz + E
BR
(

B
CRCli + BpC

)
(7.41)

7.3.5 Measurement model Jacobians
To be able to propagate the noise and covariance matrices in the Extended Kalman filters within
FastSLAM a set of Jacobians of the measurement model has to be derived. The first Jacobian
to derive is the measurement model Jacobian with respect to landmarks, a Jacobian in where
the pose is static hence the rotation matrix function, C

ER(φ, θ, ψ), reduces to just constants. The
resulting Jacobian is a function of the current pose, roll and pitch angle to form the rotation
matrix constants and the current position of the landmark.

Hc,li(sk, φk, θk, li) = ∂hc
∂li

=


∂xc
∂xl

∂xc
∂yl

∂xc
∂zl

∂yc

∂xl

∂yc

∂yl

∂yc

∂zl
∂zc
∂xl

∂yc

∂yl

∂zc
∂zl

 (7.42)

The second Jacobian needed is the one of the measurement model with respect to the state
vector, describing how changes in the state affect the measurement vector.

Hc,s(sk, φk, θk, li) = ∂hc
∂sk

=


∂xc

∂xk
∂xc

∂yk
∂xc

∂zk
∂xc

∂ψk

∂yc

∂xk
∂yc

∂yk
∂yc

∂zk
∂yc

∂ψk

∂zc

∂xk
∂zc

∂yk
∂zc

∂zk
∂zc

∂ψk

 (7.43)

This Jacobian, derived by the help of MATLAB, includes a lot of sine and cosine terms as
derivatives of the rotation matrix function, C

ER(φ, θ, ψ), are included. However, one important
aspect to notice is how none of the depth-row elements, as shown in (7.44), depends on the roll
angle, as the depth axis corresponds to the x-axis, around which roll is performed.[

∂zc

∂xk
∂zc

∂yk
∂zc

∂zk
∂zc
∂ψ

]
=
[
−cθcψ −cθsψ sθ

(
cθsψ(x− xl)− cθcψ(y − yl)

)]
(7.44)

Finally, the last Jacobian to derive of the measurement model is related to the additive noise
which is expected to affect the measurements. Assuming that the ArUco detector is capable of
exactly locating the corner of a detected marker within the image, the noise introduced by the
detector will only consist of possible quantization errors being ±1 pixel on both x- and y-axis.
For the depth measurement any possible deviations in the disparity map and internal calculation
of the depth value will result in measurement errors. It is assumed that this noise on the depth
measurement can be modelled as additive noise whose variance should be tuned when testing.
Thereby, all noise elements affect the measurement vector as additive noise, why the Jacobian of
the measurement model with respect to the additive noise variable, v, is just an identity matrix.

Hc,v = ∂hc
∂vk

=


∂xc

∂vk
xc

∂xc

∂vk
yc

∂xc

∂vk
d

∂yc

∂vk
xc

∂yc

∂vk
yc

∂yc

∂vk
d

∂zc

∂vk
xc

∂zc

∂vk
yc

∂zc

∂vk
d

 = I3 (7.45)
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7.4 GOT Measurement model
It was decided in Section 5.2 that the FastSLAM algorithm should include GOT measurements
as another type of measurement. Including the GOT measurements should ensure that the
coordinate system of the estimated position aligns with the GOT coordinate system such that
the position controller can track way-points given in the GOT frame. One way of including
the GOT measurements into FastSLAM is by using it as relative distance measurement to a
virtual landmark placed in the origo, (0, 0, 0), of the GOT coordinate system. Being another
relative distance measurement it can be included into the FastSLAM algorithm by developing a
measurement model on the form shown in (7.46) where additive noise is considered.

zkG = hG(sk, lGOT) + vk (7.46)

Where:
zkG is the Games on Track measurement vector at time k
sk is the pose of the drone at time k
lGOT is the position vector of the virtual landmark in earth frame
vk is the measurement noise at time k

The measurement vector contains the three coordinate components described in (7.47).

zG =

xGOT
yGOT
zGOT

 (7.47)

It is assumed that the GOT system is installed in such a way that the whole environment is
covered similarly. As GOT measurements are only position measurements they are assumed not
to be affected by the orientation of the drone. It is expected that additive noise, vk, will model
the stochastic part of the measurement reasonably well with the determined covariance matrix
from (2.2).

vk ∼ N
(
03×1,ΣGOT

)
(7.48)

7.4.1 Measurement model
A simple relative measurement model describing how the GOT system gives measurements of the
drone position relative to the GOT origo landmark, is put up in (7.49). The model is designed
such that the length of the measurement vector will increase if the drone is moved further away
from the GOT origo.

hG(sk, lGOT) = skxyz − lGOT (7.49)

The measurement will increase in the direction of the movement which agrees with the expected
measurements from GOT. The corresponding Jacobian describing this change is shown in (7.50)

HG,s = ∂hG
∂sk

=


∂xG

∂xk
∂xG

∂yk
∂xG

∂zk
∂xG

∂ψk

∂yG

∂xk
∂yG

∂yk
∂yG

∂zk
∂yG

∂ψk

∂zG

∂xk
∂zG

∂yk
∂zG

∂zk
∂zG

∂ψk

 =
[
I3 03×1

]
(7.50)
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The Jacobian of the measurement vector with respect to the landmark location is shown in
(7.51). If the GOT origo is moved towards the current position of the drone the length of the
measurement vector will decrease, hence the negative Jacobian.

HG,lGOT = ∂hG
∂lGOT

=


∂xG
∂xl

∂xG
∂yl

∂xG
∂zl

∂yG
∂xl

∂yG
∂yl

∂yG
∂zl

∂zG
∂xl

∂yG
∂yl

∂zG
∂zl

 = −I3 (7.51)

where xl, yl and zl is coordinate of the GOT landmark corresponding to origo. However, due to
the static landmark location corresponding to origo, this Jacobian will not have any effect.
Due to the additive noise the Jacobian with respect to the noise variable, v, becomes an identity
matrix as well.

HG,v = ∂hG
∂vk

=


∂xG

∂vk
xG

∂xG

∂vk
yG

∂xG

∂vk
zG

∂yG

∂vk
xG

∂yG

∂vk
yG

∂yG

∂vk
zG

∂zG

∂vk
xG

∂zG

∂vk
yG

∂zG

∂vk
zG

 = I3 (7.52)

7.4.2 Landmark initialization

Initially, before starting the FastSLAM algorithm, a landmark placed in (0, 0, 0) is inserted into
the map of landmarks within all particles. Therefore an inverse measurement model will not be
needed as no other GOT landmarks would have to be inserted into the map after initialization.As
the origo of the GOT coordinate system and the origo of the FastSLAM coordinate system
should align completely, the location of this virtual landmark is fully known and deterministic so
the covariance of the inserted landmark is set to 03×3 to reflect this.

Whenever a GOT measurement is available, the likelihood of getting such a measurement is
used when calculating the importance weights of each particle. Using the pose of each particle
and the deterministic location of the landmark, due to the zero covariance, the likelihood of
getting this measurement is solely evaluated based on the measurement model and measurement
covariance. This will result in particles whose pose are closer to the GOT measurement getting
higher weights than particles being far away from the received measurement. In return this
should align the FastSLAM coordinate system with GOT.

7.5 Implementation

With the given motion and measurement models the FastSLAM algorithm needs to be imple-
mented in C++ such that these models can be incorporated. The following implementation
section is intended to give the reader an overview of the specific implementation of the FastSLAM
algorithm made for this project. It has been decided to use an object oriented programming
language for the implementation of the algorithm, due to the nature of the algorithm, where
particles and their associated maps are constantly copied and reused. C++ is one of the object
oriented programming languages supported by ROS as presented in Appendix I, why this language
is chosen.
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Figure 7.2: UML class diagram showing the connections between the main classes of the
FastSLAM implementation made for this project.

Figure 7.2 shows a class diagram of the main classes chosen for the implementation and the
relations between them. An instance of the ParticleSet class is associated to P instances of
the Particle class. The Particle class implements step 2a to 2f of the algorithm described in
Section 7.1. The ParticleSet class implements step 1 and 2g, and furthermore includes functions
to tell each of the instances of the Particle class to perform step 2a to 2f. To be able to perform
these steps, both the ParticleSet and Particle class are associated to the MeasurementSet
class that keeps track of the available measurements at time k, zk.

To be able to use different types of measurements in the algorithm, the Measurement interface
has been defined such that it ensures that each type of measurement have the necessary attributes
and operations to be used in the ParticleSet and Particle class. To store the information about
the map, M, each particle is associated to an instance of the MapTree class, that implements
the binary tree functionalities described in Section 7.1. Therefore each instance of the MapTree
class is also associated with N instances of the Landmark class.

To implement the mathematical steps of FastSLAM, which involves vector and matrix arithmetic,
the Eigen3 library is used. No specific algorithm for resampling is suggested for the FastSLAM
algorithm as mentioned in Section 7.1. Therefore it is decided to use the Resampling Wheel
algorithm described in [26] and [27] by Sebastion Thrun, one of the co-authors of FastSLAM.
This algorithm was chosen due to the ease of implementation.

When implementing the FastSLAM algorithm, converting the math presented in Section 7.1
and Section E.9, into C++ code, a few practical problems have to be considered. One of them,
step 2c, involves drawing random samples from an N -dimensional Gaussian distribution with an
arbitrary mean vector and covariance matrix, also known as a multivariate Gaussian.
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To do so the procedure described in [28], was implemented. To draw a sample, x, of the
distribution N (µ,C) the procedure is as follows

1. Perform a Cholesky decomposition of the covariance matrix, C to yield and N × N
non-singular matrix G, where C = GGT .

2. Draw a realization u of the PDF, N (0, I).

3. The desired sample is then calculated as x = Gu + µ

To perform the second step the code found in [29] is used. The first step can furthermore be
performed by using the Eigen3 library, but requires a symmetric matrix. Unfortunately the
steps involved in calculating the covariance matrix do sometimes not yield a symmetric matrix,
probably due to numeric precision. This results in a failing Cholesky decomposition due to the
non-symmetric matrix and the way Eigen3 handles the decomposition. To solve this issue the
approach of symmetrizing matrices proposed in [30] is used. This symmetrization is simply done
as follows

C∗ = 1
2
(
C + CT

)
(7.53)

In this project it is chosen to initialize the FastSLAM algorithm by placing the initial particles
based on the first GOT position measurement and with a yaw angle of 0 degrees, assuming that
the drone is initially aligned with the GOT frame (zero heading). Furthermore, all particles are
initialized with a fictive landmark, representing the GOT origo. This landmark is initialied with
a zero mean, x = y = z = 0, and a covariance matrix of zero, thereby forcing the uncertainty of
the origo to be zero, preventing any movement of the landmark.

7.6 Test of the FastSLAM 2 algorithm
In this section the implemented FastSLAM algorithm is tested and verified. The performed test
is based on considerations about the scenarios which can be experienced during a flight in a
factory environment. The scenario consists of the drone flying in a planed path through areas
with no GOT measurements.
The test is performed in a Motion Tracking lab equipped with a Vicon camera system. Measure-
ments from the Vicon system are used as reference for the performance evaluation of FastSLAM.
Furthermore the Vicon measurements are used as a replacement for the GOT system. The
substitution of the GOT system is reasonable since the Vicon measurements can be described
with the same measurement model as the GOT measurements, described in (7.49).
The described motion model within FastSLAM relies on velocity and yaw angle estimates from
the Extended Kalman filter. To verify the functionality of FastSLAM seperately, and because
the Extended Kalman Filter, presented in Chapter 8, has not been integrated with FastSLAM,
it is decided to obtain these velocity inputs from the Vicon system. The estimate of yaw can
be directly substituted with Vicon yaw measurements while the velocities are obtained through
differentiation of the Vicon position measurements.

The measured heading and the velocity estimates obtained from differentiating the Vicon position
measurements, corresponds to quite accurate estimates without much noise. It is not expected
to get this good estimates from the EKF and it is therefore decided to make these estimates
worse. The velocity estimates is worsened by low-pass filtering them to introduce a phase lag,
and further worsened by adding a bias and Gaussian noise. The yaw measurement is worsened
by only adding Gaussian noise to the signal.
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The performance test of the FastSLAM algorithm is compared to a dead reckoning based estimate.
The dead reckoning estimate is solely based on the kinematic motion model using the worsened
velocity estimates and yaw angle.

A test flight is recorded in a ROS bag which allows playback of the data into the ROS environment.
The recorded data contains the RGB-D camera stream and the measurements from the Vicon
system. This allows several tests to be performed with the same flight, e.g. changing the
time-window in where GOT measurements are available.

7.6.1 Test results
The test is designed to simulate a scenario in which the drone is flying a planned trajectory
without GOT measurements. To imitate a planned trajectory the drone is remote controlled.
The drone is flown in such a way that ArUco markers are visible all the time. Three different
tests are performed to compare the performance of the algorithm with a varying amount of
available GOT measurements. In the three executions of the algorithm the GOT measurements
are always available initially and then disabled after some time.

The first test leaves GOT measurements available for the first 5 s. The second test leaves the
GOT measurements available for the first 75 s. The third test leaves the GOT measurements
available for the whole flight of 145 s.

The result of the flight can be seen on Figure 7.4 where the individual executions are visualized.
The Vicon measurement of the four states being estimated, hence being the comparable reference,
is plotted as well. Besides this measured trajectory, the dead reckoning based estimate is also
shown.

From the test results it can be seen that the implementation is working and is able to estimate
the position and heading of the drone, even when GOT measurements are no longer available.
It is especially worth noticing how the dead reckoning based estimate quickly drifts away from
the measured trajectory. On Figure 7.4 the red curve is overlaying the black curve the entire
flight, indicating that only a small estimation error is present when GOT measurements are
available. But from Figure 7.4 it can also be seen that larger estimation errors appears when
GOT measurements are lost. The estimation error for the different tests is presented in Figure 7.3
and Figure 7.5. The error is calculated as the Euclidean distance between the estimated position
and the reference position measured with Vicon.
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Figure 7.3: Euclidean estimation error of FastSLAM relative to the travelled distance. Yellow
area indicates a duration of the flight with no ArUco markers detected, hence a region which
does not represent the test scenario. The green area indicates the first 75 s of the flight.
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Figure 7.4: Timeseries plot showing the performance of the FastSLAM estimator. On the plot
the performence of the estimator is shown for various durations of available GOT measurements.
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represent the test scenario.
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The plots in Figure 7.3 and Figure 7.5 are obtained by initially performing a linear interpolation
of the trajectories estimated by FastSLAM, to generate estimates matching up with the time
indices of the Vicon data. At each time index an error is calculated as the Euclidean distance
between the estimated position and the Vicon measurement. Figure 7.5 is obtained by plotting
this estimation error as a function of time. The distance travelled is calculated as the sum of
Euclidean distances between consecutive Vicon measurements. Figure 7.3 is obtained by plotting
the estimation error as a function of this travelled distance.

From Figure 7.3 and Figure 7.5 it is concluded that the estimation error does not seem to depend
on the travelled distance or time, as long as the drone can detect at least one marker. This is
apparent by inspecting the relation between the estimation error and the travelled distance or
time. For all of the three executions it is evident that the estimation error is not increasing with
the travelled distance or time, however, it is evident that the estimation error is larger when no
GOT measurements are available. This is seen by comparing the black and blue with the red
curve. Notice that the green area in Figure 7.3 indicates the first 75 s of the flight where GOT
measurements are included.

A requirement for the FastSLAM algorithm to work is that at least one marker is detected all
the time. This is not fulfilled in the end of the test, hence a region which does not fulfil the
requirements for the test scenario. The consequence of not detecting any markers is seen in the
yellow area of Figure 7.3 and Figure 7.5. The estimation error in this area is increasing with
the travelled distance, similar the dead reckoning based estimate shown in Figure 7.4. Finally
the increase in estimation error when no GOT measurements are available, can be explained by
estimation errors within the landmark positions and RGB-D measurement model errors.

The 3D plot shown in Figure 7.6 visualizes both the measured and estimated trajectory while
also illustrating the actual marker locations and the estimated marker locations extracted from
the map of FastSLAM. The estimates comes from the test where GOT measurements are only
included the first 5 s.
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Figure 7.6: 3D visualization of the test flight with the manually controlled drone. The red
reference trajectory is measurements taken with the Vicon system. The blue scatter trajectory
is the estimated position from FastSLAM. Red circles indicate the actual placement of ArUco
markers while the black squares is the estimated position of the markers.

61 / 172



Chapter 7. FastSLAM 2.0 estimator

The measured position of landmarks is indicated with red circles while the black markers indicates
the resulting estimated position extracted from the FastSLAM map at the end of the test. A
small error between every estimated marker position and the actual position is apparent. This
error is partly due to measurement errors resulting from the physical measurement of the marker
locations and actual estimation errors within the FastSLAM algorithm. The actual estimation
error in the estimated position of the markers becomes important when GOT measurements
are not available as incorrectly placed markers will easily result in estimation errors within the
estimated position and heading of the drone. This is evident from Figure 7.3 when comparing
the black and blue graph with the red graph.

7.6.2 Test discussion
The performed test demonstrates a working FastSLAM solution which is able to estimate the
position and heading of the drone even when GOT measurements are not available. From
the test it is concluded that small but bounded estimation errors are present when the GOT
measurements are not available. However, the Motion Tracking lab used for testing the algorithm
is putting up some physical constrains on the test which can be performed due to its limited
size. The limited size does not allow a scenario where the drone is flying for a longer distance
without GOT measurements in a not yet discovered area. In such a scenario the error might not
be bounded but instead increase with the travelled distance.
Furthermore the performance of the FastSLAM algorithm has not been tested in conjunction
with the EKF, why the motion model with actual velocity estimates from the EKF, has not been
verified.
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8 Full-state EKF estimator

In this chapter the Extended Kalman filter used for estimating the entire state vector of the
system is described. In Section E.5, the probabilistic theory behind the discrete Extended
Kalman filter is shown, reaching the description of how the state estimation problem can be
solved if both a motion model and a measurement model are assumed. The motion model should
be on the form described in (8.1). And the measurement model on the form described in (8.2).
Within this chapter, an introduction to the objective of the Extended Kalman Filter is first given,
followed by a description of the assumed measurement and motion models. Afterwards follows
a description of the design and how the noise is assumed to affect these models. Finally the
estimator is implemented and test results are presented.

χk = f
(
χk−1,uk−1,wk−1

)
(8.1)

zk = h
(
χk,vk

)
(8.2)

wk ∼
(

0,Cov
(
wk
))

(8.3)

vki ∼
(

0,Cov
(
vki

))
(8.4)

The Extended Kalman filter designed in this chapter has multiple purposes. Firstly, it is known
from Chapter 6 that the controllers need a Full-State estimate as feedback, since they are designed
as full state feedback controllers. The full state vector to estimate is shown in (8.5).

χ̂ =
[

Hx Hẋ χθ
Hy Hẏ χφ ψ z ż χz̈

]T
(8.5)

Besides providing the controllers with estimates, it is known that the FastSLAM algorithm uses
a motion model with velocities as input, which should be supplied by the EKF. Lastly, the
PX4 attitude estimator has to be supplied with heading estimates since the on-board attitude
estimator does not have any sensor to measure the yaw angle except integrating the gyroscope,
which is likely to drift.

8.1 Measurement model
From Chapter 5, it is known that the EKF is supplied with measurements from the FastSLAM
algorithm and the PX4 attitude estimator. From the FastSLAM algorithm it is supplied with
an estimated position in world frame and an estimated yaw angle. Before the position from
FastSLAM can be used, it has to be rotated from the EF to the HF in which the EKF is
estimating the position. The estimates from the FastSLAM are related to the state vector with
the measurement model in (8.6). From the PX4 attitude estimator it is supplied with an attitude
estimate, which is described by the state vector in (8.7).
In the two measurement models it is assumed that the noise affecting the measurements is
additive, represented by the noise vectors vfs and vPX4. The measurements of roll and pitch
coming from the PX4 attitude estimator are sensitive to initial calibration and prone to drift
due to imperfect numerical integration of angular velocities measured by the on-board gyroscope.
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This is why the measurement model for the zkPX4 presented in (8.7) presents two additional states
to be estimated. These two states are a bias on the measurements of the angles.

zkfs =


Hx
Hy
z
ψ


k

= hfs(Hx,Hy, z, ψ,vfs) =


cos(ψ) − sin(ψ) 0 0
sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1



Hx
Hy
z
ψ


k

+ vkfs (8.6)

zkPX4 =

θφ
ψ


k

= hPX4(χθ, χφ, ψ, bθ, bφ,vPX4) =

Cθ 0 0 1 0
0 Cφ 0 0 1
0 0 1 0 0



χθ
χφ
ψ
bθ
bφ



k

+ vkPX4 (8.7)

Where:
zkfs is the measurement vector from the FastSLAM algorithm
zkPX4 is the measurement vector from the PX4 attitude estimator
bθ is the bias in the pitch measurement
bφ is the bias in the roll measurement
vkfs is the noise vector affecting the estimates from the FastSLAM

algorithm
vkPX4 is the noise vector affecting the estimates from the PX4 attitude

estimator

8.2 Motion model
The motion model used in the extended Kalman filter is the state space model derived in
Section 6.1. This is a linear state-space model consisting of 16 states on the form described in
(8.1), describing both the position and attitude of the drone.

In Section 6.2 it is presented how the z controller is vulnerable to disturbances entering the
system at the thrust input signal. These disturbances are due to model uncertainties related to
the thrust value which makes the drone hover. This value acts as an operation point for the z
controller, and if it is not known, the controller will have a steady state error when trying to
reach a set-point. In Section 6.2.2 it is presented how the input disturbance is modelled with an
exosystem, illustrated in Figure 6.7.

The thrust value that makes the drone hover is expected to vary slowly compared with the
sample rate of the extended Kalman filter, and the disturbance is therefore modelled as it is not
changing. This model is presented in (8.8).

dk+1 = Add
k = dk (8.8)

Where:
dk is the hover thrust value
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In order to include the estimation of the disturbance dk in the extended Kalman filter, the
state-space model describing the z movement has to be extended. This is done by including the
model of the disturbance into the z model. The augmented state-space model for z is given in
(8.9) 

z
ż
χz̈
d


k+1

=


1 Ts 0 0
0 1 TsCz̈ 0
0 0 0 1
0 0 0 Ad



z
ż
χz̈
d


k

+
[
Bz̈
0

]
T k (8.9)

In Section 8.1 it is presented that a bias estimate has to be obtained for the pitch and roll
measurements obtained from the PX4 attitude estimator, requiring then a motion model for
them. This is done by modelling the biases as exogenous systems affecting the measurements.
These biases are modelled as being constant since, as explained for the disturbance in the thrust
input, they are expected to vary slow compared to the sample rate of the EKF.

In the design of the Extended Kalman filter it is assumed that the state noise in the motion
model is additive noise. This assumption is simplifying the motion model in (8.1) to a motion
model of the form in (8.10)

χk = f
(
χk−1,uk−1

)
+wk−1 (8.10)

8.3 Observability and sample rates
The rate in which the measurements are available is not expected to be the same. The ones
coming from the PX4 attitude estimator are acquired with a rate of 20 Hz, which is the same as
the rate the controllers run at. However, the one at which the measurements from the FastSLAM
algorithm can be acquired is expected to be less than 20 Hz. The used measurement model
at each iteration of the kalman filter is therefore changing between two different models: one
where both the measurement vector zkfs and zkPX4 are available, and another where only the
measurement vector zkPX4 is available. The observability of the system is analysed in order to
investigate the effect of the changing measurement model.
The measurement model for zkfs is linearised in order to do the observability analysis since the
Observability rank criterion is only valid for linear systems. This is deemed reasonable since
the non-linearity in the measurement model is due to the position x and y being measured in a
rotated frame which is not expected to change the observability of the system. The Observability
rank criterion states that the Observability matrix defined in (8.11) should have full rank in
order for the system to be observable.

O =



C
CA
CA2

...
CAn−1


(8.11)

Where:
n is the number of states in the system

The state-space model found in the modelling section is composed of 16 states, but as mentioned
in Section 8.1 and Section 8.2 three additional states have been added. This means that the
observability matrix has to have rank 19 in order for the system to be observable.
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The observability matrix and its rank are found with MATLAB. The rank of the observability
matrix is found to be 19 when both the measurement vector zkfs and zkPX4 are available, which
indicates that the system is observable. When only the measurement vector zkPX4 is available the
rank of the observability matrix is found to be 11, indicating that the system is not observable.
The 11 states being observable are the four states from the pitch ARX model, the four states
from the roll ARX model, the state from the yaw ARX model and the pitch and roll bias included
in the state-space description. The remaining states not being observable are the three states
from the ARX z model, the x and y position of the drone, the x and y velocities of the drone
and finally the input disturbance affecting the z ARX model. The system not being observable
in some iterations of the Kalman filter results in dead reckoning in the unobservable states in
between measurements from the FastSLAM algorithm.

8.4 Design
Section E.5 describes that a requirement for using the discrete extended Kalman filter is to know
the covariances of both the state noise vector wk and the measurement noise vector vk. The
state noise vector wk is a 19 dimensional vector while the measurement noise vector is either a
three or seven dimensional vector depending on if a FastSLAM pose estimate is available.
The FastSLAM algorithm is maintaining a time-varying covariance matrix for the current
estimated pose vector which is used in the extended Kalman filter together with the estimated
pose. A constant covariance matrix is used in tests where the Vicon motion tracking system is
used instead of FastSLAM. The entries in the covariance matrix of the measurements vectors
zkPX4 and zkfs can either be estimated from measurements sampled while the drone is in rest or
considered as a collection of tuning parameters.
For the design of this Kalman filter it is decided to treat the entries as tuning parameters since
it is considered to be the easiest way of designing a filter with a satisfactory performance and
it is likely that additional tuning has to be performed with the estimated covariance matrices.
Furthermore, it is assumed that the covariance between the different measurements in both the
measurement vector zkPX4 and zkfs is zero. This assumption is reducing the covariance matrices
to being diagonal matrices and hereby also reducing the number of parameters to tune.

Regarding the state noise vectorwk it is more involved to estimate the entries of the corresponding
covariance matrix. In the design of the Kalman filter it is first of all assumed that the state noise
vector is generated by a stationary process such that the covariance matrix becomes independent
of time. Moreover, it is assumed that the entries in the state noise vector are uncorrelated. These
two assumptions make the covariance matrix of the state noise a constant diagonal matrix. The
entries in the diagonal are then used as tuning parameters the same way as for the measurement
noise covariance.

8.5 Test results
In this section the test results are shown after the Kalman filter has been designed and tuned.
The flight used for the test results is performed with the drone being remotely controlled by a
pilot. The Kalman filter has been tested in two different scenarios, one with the measurements
from the FastSLAM algorithm assumed to be available with the same rate as the update rate as
the Kalman filter, and another one with the rate of the FastSLAM measurements reduced to a
fifth of the update rate of the Kalman filter. The rate of the Kalman filter is 20 Hz. This means
that the two scenarios tested are with FastSLAM measurements available with a rate of 20 Hz
and 4 Hz.
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In order to test the performance of the EKF independently of the FastSLAM algorithm per-
formance, the FastSLAM measurements are replaced with measurement from a Vicon motion
tracking system for the test.

In Figure 8.1 the plots show the performance of the Kalman filter in the three position coordinates.
It can be seen that the Kalman filter is tracking the Vicon measurement properly when they are
available with a rate of 20 Hz, whereas the estimate gets more noisy when the Vicon measurements
are only available with 4 Hz. This noisy behaviour can be explained by the position states not
being observable when the FastSLAM measurements are not available, which leads to a dead
reckoning behaviour in between FastSLAM measurements. A noticeable remark is the ability of
the Kalman filter to track the z position when the drone has landed. The floor level is calibrated
to be at 0 m. From the plot it can be seen that the drone has landed in the last few seconds and
as a consequence the operation point for the z motion model has changed. The Kalman filter is
able to track this change in operation point, as shown with the red graph on the z plot.
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Figure 8.1: Estimation of the position of the drone. The plots is both showing the performance
of the filter when the FastSLAM measurements is available with a rate of 20 Hz and 4 Hz
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In Figure 8.2 similar test results are shown for the velocity states. It can be seen that the Kalman
filter is worse at estimating velocities compared to positions, which can be due to the Kalman
filter not having measurements of velocities but only attitude and position. In the same way as
with the z position estimate, the z velocity estimate is affected by the thrust value which makes
the drone hover. This is evident in the final part where the drone has landed and the thrust
value is not yet estimated correctly. In this part the velocity estimate is wrong but approaching
the correct velocity as the estimated thrust value is approaching the correct value. Hence it can
be concluded that the estimation of the thrust value is working.
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Figure 8.2: Estimation of the velocity of the drone. The plots are both showing the performance
of the filter when the FastSLAM measurements are available with a rate of 20 Hz and 4 Hz
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In Figure 8.3 the attitude estimation is shown for the pitch and roll angles. On the two plots the
measurements from the Vicon system and PX4 attitude estimator are plotted, together with the
estimate of the angles and the estimate of the biases affecting the PX4 measurements. From
the plots it is evident that there is an offset between the PX4 measurements and the Vicon
measurements. This offset is estimated by the extended Kalman filter which is shown as the
green graphs on the plots. It can be concluded that the estimate of the biases is working as
intended since the estimated pitch and roll angles are tending towards the Vicon measurements.
Here it should be noted that the Kalman filter is not using the Vicon pitch and roll measurements
but only position measurement to estimate the biases, which allows the desired outcome of the
angles being close to the Vicon measurements.
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Figure 8.3: Estimation of the pitch and roll angles.

In Figure 8.4 the Yaw estimation is showed. From this plot is shown that the Kalman filter is
able to track the yaw angle.
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Figure 8.4: Estimation of the yaw angle.

69 / 172



Chapter 8. Full-state EKF estimator

70 / 172



9 Conclusions

The purpose of this project is to investigate whether a combination of a colour and depth camera
can be used on a drone to increase the safety of indoor navigation in factory environments equipped
with a GamesOnTrack (GOT) positioning system drop-outs and dead zones may occur. A SLAM-
based absolute position estimator and controller solution for drones equipped with a PX4 flight
controller, a small Linux companion computer running ROS and an RGB-D camera are developed.

Throughout a pre-analysis it is concluded how drones are notoriously unstable and needs absolute
position measurements to have a stable and non-drifting position. Without any absolute position
measurements a relative sensor such as a camera can be used to detect distinct landmarks within
the environment, enabling simultaneous localization and mapping. It is decided to solve the
SLAM problem using the Filtering-based algorithm, FastSLAM 2.0, due to its capability of
providing real-time estimates, its computational efficiency, and the good stochastic framework
wherein other sensors such as GOT can easily be included. To assure known correspondences to
the landmarks within the environment and to increase robustness of the system it is chosen to
put up static ArUco markers with known identifiers.

The proposed solution is composed of an existing drone equipped with a PX4 flight controller
coupled with a set of position controllers taking in position and attitude estimates from an
interconnected combination of an Extended Kalman Filter and the FastSLAM estimator taking
in GOT measurements whenever available. Every element of the solution is developed within the
ROS environment, and tested with the Intel Aero Ready to Fly drone equipped with a PX4 flight
controller, an Intel Aero compute board running Linux and an Intel RealSense R200 RGB-D
camera. The PX4 flight controller ensures a stabilized attitude and tracks the attitude and thrust
references given by the position controllers.

Based on an identified ARX model, a state-space model of the system is derived and used to
design two decoupled position controllers running at 20 Hz: a z-controller adjusting the thrust
reference based on z-position estimates and an xy-controller adjusting the roll and pitch references
based on x and y position estimates. The yaw angle is held constant by the PX4 controller.
Trajectories defined as way-points within the GOT coordinate system are sent to the positions
controllers as position step references. Saturations on the position errors are included to limit
the velocity while allowing any step size.

The controllers get a Full-State estimate from an Extended Kalman Filter designed to take
in attitude measurements from the PX4, together with position and yaw estimates from the
FastSLAM estimator. The EKF furthermore estimates a roll and pitch bias to accommodate for
misalignments and a thrust bias value to accommodate for battery drain.
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The FastSLAM algorithm consisting of a particle filter and several Extended Kalman Filters is
implemented with a simplified motion model that takes in velocity estimates from the Full-State
Extended Kalman Filter. These estimates are used to predict the position of the drone. Further-
more, RGB-D measurements of ArUco markers within the environment are used to correct the
particle distribution and landmark locations. Whenever available, GOT measurements are used
within FastSLAM to correct the position and ensure that the coordinate system of FastSLAM
converges towards the GOT coordinate system. When new landmarks are detected they are
inserted into the map allowing the drone to explore new areas while still estimating the position.

Each element of the system is tested individually within a Motion Tracking lab equipped with a
Vicon camera system, to verify the functionality and performance. The Full-State EKF is tested
with both simulated and real measurements and compared with the measured path. The EKF is
capable of estimating the necessary Full-State vector even at a reduced position measurement
rate of 4 Hz. However, a small lag is apparent in the velocity estimates which seems to be
slightly incorrect. By the help from the bias estimation within the Full-State EKF the z-position
reference is tracked without any apparent overshoot even at decreasing battery level. The
xy-controller does not perform as nicely but references are tracked and the position can be held,
although with small oscillations. FastSLAM is able to provide converging position estimates both
with and without GOT position measurements. The estimator is capable of inserting detected
landmarks correctly into its internal map, which is verified to match with the actual location of
the landmarks within just a few centimetres. When GOT measurements are lost, the FastSLAM
estimator is capable of continuously generating a position estimate solely based on the RGB-D
measurements of detected landmarks, with an estimate error of up to approximately 20 cm.

It has not been possible to perform tests with longer trajectories or within larger environments,
and as a consequence it has not been verified how well FastSLAM performs in e.g. a long hall.
Furthermore a combined test has not been carried out and the individual elements have not
been tested together, and thus no conclusions can be made on the robustness of the overall systems.

Based on the results it has not been possible to verify whether or not the proposed solution
is able to increase the safety of indoor drones as a combined test still has to be carried out to
verify the robustness. On the other hand the individual tests results presented within this project
illustrate how a FastSLAM-based RGB-D camera solution with static markers in the environment
and with a GOT positioning system is indeed able to estimate the position of a drone, such that
the position can either be held still or the drone can continue its motion, even at loss of GOT
measurements. With only few new landmarks discovered while GOT measurements are lost, the
position estimate does not seem to drift. A combination of the FastSLAM 2.0 algorithm and an
Full-State Extended Kalman filter providing motion model inputs to FastSLAM seems like a
computationally efficient choice.

It is deemed likely that a camera based solution can help to increase safety of drones flying in
factory halls where local position measurements can be lost.
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10 Discussion

As stated in Chapter 9 the full system has not been tested as a whole, and only the sub modules
have been verified to work. The full suggested system introduces multiple loops, which could
possible lead to instability. Therefore a test, a simulation, or a thorough analysis of the full
combined system has to be performed before any conclusion about the performance of the full
system can be made.

As stated in Chapter 6 the position controllers developed in this project where not designed to
follow a given trajectory, but only reach certain way-points. This results in controllers that do not
necessarily make the drone fly in straight lines between the way-points. This is possible due to
the controllers not controlling the ratio between the velocities of the x, y and z coordinates. This
limits the usability of the system since certain safety precautions have to be taken when designing
the way-points, to make sure that the controllers do not make the drone fly into obstacles. Since
the focus of this project is to ensure safety when drones fly in an factory environment, where
humans could potentially be present, it is deemed as a necessity to be able to define strict bounds
on the drones deviation from the given path, such that this can be taken into account in the
planning of the way-points. No analysis has been made to investigate if such strict bounds exist
for the developed controllers. Thus, some further analysis of the controllers has to be made
before these can be used in a critical environment. On the other hand, if this analysis of the
developed controllers shows that the bound is too high for the system to be really useful, or if
no bound exists, then new controllers have to be developed. A suggested improvement of the
control system is a system which penalise deviation from the planned trajectory and not just
tracking references.

In the current implementation of the FastSLAM algorithm the roll and pitch values needed in
the RGB-D measurement model coming from the EKF are used as deterministic values. Thus
the FastSLAM algorithm does not take the probabilistic properties of these random variables
into account, although the EKF is estimating the covariance of these random variables. This
could possible degrade the performance of the FastSLAM algorithm. Therefore, it should be
considered if the probabilistic properties of these variables should be included in the FastSLAM
algorithm.
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A Modelling

A.1 First principle model
This section is intended to show an approach to the modelling of a quadrotor. To derive the
dynamic equations of the system, the Euler-Lagrange approach will be used.
Generally, there are two different configurations used for defining the position and orientation to
model quadcopters. One approach is to place opposite rotors along the same axis, also described
as plus configuration. The other approach which is the one used in the following modelling is to
place the axes in the same direction as the sides of the drone, described as X configuration. The
two approaches are shown in Figure A.1.

(a) (b)

Figure A.1: X (Figure A.1(a)) and plus (Figure A.1(b)) configurations of the drone.

Two different coordinate frames are considered: one embedded in the center of mass of the drone
defined as the body frame (BF), and another one fixed on earth defined as earth frame (EF). The
axes of the BF are aligned with the drone’s principal moments of inertia, and their direction is
defined with the x axis pointing in the forward direction of the drone, and the z axis is pointing
upwards. The description of the drone is shown in Figure A.2.
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Figure A.2: Drone description. The different frames and rotations considered for the modelling
are shown as earth frame (EF) and body frame (BF). The rotors of the drone are numbered from
1 to 4.

First of all, the variables of the system is defined. The position ξ and orientation η of the
quadrotor are defined in the EF as

Eξ =

xy
z

 η =

φθ
ψ

 (A.1)

Where the different axis x, y, and z are defined as shown in Figure A.2 and φ, θ and ψ are the
angles defining the rotations around each of the EF defined axes respectively; defined as roll,
pitch and yaw.
The angular velocities in the BF are defined as follows, with each component of the vector
corresponding to the rotation around the axis in the BF.

ν =

pq
r

 (A.2)

The rotation matrix changing the coordinates from the BF to the EF has to be defined. It can
be generated by multiplying the rotation matrices around each of the axis with a defined order.
These are defined as follows.

Rφ =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Rψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (A.3)

By using the matrices defined in (A.3), the rotation matrix RψRθRφ = R defined with the
sequence of rotations φ, θ, ψ is computed. Using fixed angles, this sequence is achieved by
rotating the EF by roll around the earth x-axis, followed by a pitch rotation around the earth
y-axis and finally a rotation around the earth z-axis of yaw.

E
BR =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (A.4)
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Where cα denotes cosα and sα denotes sinα.
The transformation matrix from the orientation velocities in the EF to the angular velocities
in the BF has to be found. This is done by considering the rotation around each axis with a
specific order while considering small changes in each angle. It is chosen to consider the same
sequence used to find the rotation matrix. Therefore, the matrices used for transforming from
BF to EF have to be inverted; which due to the orthogonality in the rotation matrices is the
same as transposing.

ν = Rφ
TRθ

T

0
0
ψ̇

+ Rφ
T

0
θ̇
0

+

φ̇0
0

 (A.5)

This way, W(η) defined as ν = W(η)η̇ is found.

W(η) =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 (A.6)

It is assumed that the quadrotor has a symmetric structure as shown in Figure A.2. This leaves
the inertia of the drone defined as

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (A.7)

To compute the Euler-Lagrange equations, the external forces and torques of the system need to
be defined. The definition of these is based on the derivation of a quadcopter model shown in
[31] and [32]. Each rotor with rotational speed ωi creates a force in the direction of the rotor
axis, creating a resultant thrust defined in the BF as

BT =

0
0
T



T =
4∑
i=1

fi = k
4∑
i=1

ωi
2 (A.8)

Where:
T is the sum of each thrust force from the rotors N
ωi is the rotational speed of the ith rotor rad/s
k is the lift constant kg

At the same time, the rotors create a torque around different axis direction. The resultant torque
on each axis in the BF can be described as

Bτ =

τφτθ
τψ

 (A.9)

generating each of the movements roll, pitch and yaw.
The torque creating the roll movement, τφ, can be generated by increasing the speed of two
rotors placed in the same side of the y axis and decreasing the other two.

τφ = lk(−ω1
2 − ω2

2 + ω3
2 + ω4

2) (A.10)
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The torque creating the pitch movement, τθ, can be generated by increasing the speed of two
rotors placed in the same side of the x axis and decreasing the other two.

τθ = lk(−ω1
2 − ω3

2 + ω2
2 + ω4

2) (A.11)

The torque creating the yaw movement, τψ, can be generated by increasing the speed of two
opposite rotors and decreasing the speed in the other two. This torque is a result of the
combination between the moment of inertia and the drag of the each motor τMi = bω2

i + IM ω̇i.
If the effect of the rotor acceleration is neglected, the resulting yaw torque is defined as follows.

τψ = b(−ω1
2 − ω4

2 + ω2
2 + ω3

2) (A.12)

The parameter l describes the distance between the rotors and the center of mass, and b is the
drag constant.

Now, the Euler-Lagrange equations can be used. First of all, the lagrangian is defined as the
kinetic energy of the system minus the potential energy.

L = Ekinetic − Epotential = Etrans + Erot − Epotential (A.13)

With Etrans being the translation energy of the quadrotor and Erot being its rotation energy, the
Lagrange expression becomes the following.

L = 1
2mξ̇

T
ξ̇ + 1

2ν
T Iν −mg

0
0
z

 (A.14)

The Euler-Lagrange expression, [
f
τ

]
= d

dt

(
∂L
∂q̇

)
− ∂L
∂q

(A.15)

with [f τ ]T being the external forces and torques of the system and defining q as [ξ η]T , can
be separated into the linear and angular components. This leaves two systems of differential
equations.

f = E
BRBT = mξ̈ +mg

0
0
1

 (A.16)

τ = Bτ = 1
2
d

dt

(
∂

∂η̇
νT Iν

)
−1

2
∂

∂η
νT Iν = 1

2
d

dt

(
∂

∂η̇

(
η̇TWT (η)IW(η)η̇

))
−1

2
∂

∂η

(
η̇TWT (η)IW(η)η̇

)
(A.17)

By calling the transformation of the inertia matrix WT (η)IW(η) = J(η), (A.17) can be
rewritten into the following expression.

τ = J(η)η̈ + d

dt

(
J(η)

)
η̇ − 1

2
∂

∂η

(
η̇TJ(η)η̇

)
= J(η)η̈ +C(η, η̇)η̇ (A.18)

The term C(η, η̇) is a compact rewriting of the resulting terms in the equation, which results in
a matrix depending on η and η̇.
This two systems of differential equations describe the dynamic equations of the quadrotor
considered.
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A.2 Model simplification
It is deemed necessary to find a simplified linear version of the model in order to ease the control
of the quadcopter. To define a simplified version of the model found, some assumptions need to
be taken.
The first assumption is that the roll and pitch angles are small. When close to hovering this is a
good approximation. Therefore, using the small angle approximation [33], ν = η̇, which leads to
the relation between the torques and the angular accelerations.

Iη̈ = τ (A.19)

If a frame that only rotates with the yaw movement is considered, denoted as the heading frame
(HF), the dynamic equations for the x and y axes in the HF become the following.

m

[
Hẍ
Hÿ

]
=
[
SθCφ 0

0 −Sφ

] [
T
T

]
≈
[
θ 0
0 −φ

] [
T
T

]
(A.20)

Where T is the thrust generated by the rotors and the small angle approximation cosα ≈ 1 and
sinα ≈ α when α→ 0 is used. If the movement in the z axis is considered independently, it can
be seen that the dynamic equation becomes the following

mz̈ = T −mg (A.21)

where, in case of hovering, the thrust must be equal to the weight of the drone.
Since the drone is supposed to fly close to hovering in all cases, this equality allows to consider x
and y only dependant on roll and pitch respectively, leaving the following relation.[

Hẍ
Hÿ

]
= g

[
θ
−φ

]
(A.22)

Where roll and pitch in the HF define the rotations around x and y in the same frame.

A.3 Black-box model / System identification
The drone used for the development of the project is chosen to be the IntelR© Aero Ready to
Fly Drone which has already a PX4 flight controller implemented as explained in Section 4.1,
it is decided to proceed with the modelling of the drone considering it as a black box. In
attitude mode, this flight controller is based on proportional controllers for roll and pitch angular
references and PID controllers for roll, pitch and yaw angular rates. The code of the controller
implemented can be found in [21]. To proceed with the system identification, the simplified model
from Section A.2 is taken into account combined with the knowledge of the flight controller.
The models used for the system identification are Auto-Regressive with Exogenous input (ARX)
models. This type of models consider no dynamics on the error of the system. This allows the
fit to have a unique solution that can e found by linear regression. However, this consideration
will cause the possible dynamics of disturbances to be included in the system model. The ARX
models are defined as shown in (A.23).

yk + a1y
k−1 + ...+ anay

k−na = b1u
k−nk + ...+ bnb

uk−nb−nk+1 + ek (A.23)
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Where:
yk denotes the output at sample time k
na is the number of poles
nb is the number of zeroes plus 1
nk is the number of input samples that occur before affecting the

output (dead-time)
yk−i are the previous outputs affecting the current one, with i ∈

{1, . . . , na}
uk−j are the previous and delayed inputs, with j ∈

{nk, . . . , nk + nb − 1}
ek is a white noise disturbance

This can be rewritten into the matrix form shown in (A.24).

A(q)yk = B(q)uk−nk + ek (A.24)

Where:
A(q) = 1 + a1q

−1 + ...+ anaq
−na

B(q) = b1 + b2q
−1 + ...+ bnb

q−nb+1

q is the forward shift operator

To proceed with the identification, measurements of the drone’s position and orientation are
taken from a Vicon system and together with the extracted reference inputs of the drone’s remote
controller (RC) they are used to fit ARX models to the desired outputs.

A.3.1 Roll and pitch ARX models
Since the controllers implemented for roll and pitch have the same structure and the modelling
of the drone shows that they behave the same way, the models for roll and pitch are decided to
be of the same order. The block diagram for roll and pitch given angle references from the RC is
described in Figure A.3.

Figure A.3: Roll and pitch block diagram. The MAP block describes the transformation from
rotor speeds to thrust and torque inputs.

By inspecting the orders of the system shown in Figure A.3, the first try of fitting the data is
performed with na = 3 and nb = 2 which does not result in a good fitting. Based on the model,
it is decided to fit models for roll and pitch with the same order. When the orders of the system
are increased to be na = 4 and nb = 3, the model shows a better fit to the measurements. This
gives the corresponding description of the system describing roll and pitch, plotted in Figure A.5.
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φ(z) = Gφ(z)φref(z) = 0.8608z−1 − 0.4211z−2 − 0.177z−3

1− 0.261z−1 − 0.2374z−2 − 0.1581z−3 − 0.06463z−4φref(z) (A.25)

θ(z) = Gθ(z)θref(z) = 0.1938z−1 + 0.1944z−2 − 0.3103z−3

1− 1.187z−1 + 0.3037z−2 − 0.1289z−3 + 0.1045z−4 θref(z) (A.26)

The poles of both models are found to be inside the unit circle, and thus stable. The poles and
zeros of the models found for roll and pitch are shown in Figure A.4.
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Figure A.4: Roll Figure A.4(a) and pitch Figure A.4(b) poles and zeros plot. The pole locations
of the models indicate a stable system.
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Figure A.5: Roll and pitch fitted models. Data in blue is measurements used for fitting and
data in red is the resulting fitting
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Data extracted from a different experiment is compared to the output of the models found with
the corresponding inputs in order to validate them, shown in Figure A.6.
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Figure A.6: Roll and pitch models validation. Data in blue is measurements used from a
different experiment and data in red is the result of using the inputs of the experiment with the
found models

Taking the drone model described in (A.22) into account, it can be seen how ẍ and ÿ are directly
related to roll and pitch, meaning that in order to find a model for x and y only two integrators
are needed from the angles.

Figure A.7: x and y block diagram derived from the simplified model.

For the validation of x and y, the measurements from the Vicon set-up are differentiated twice,
giving the accelerations in each direction. These values found are compared to the roll and pitch
models found previously multiplied times gravity as described in the model. The result is shown
in Figure A.8.
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Figure A.8: x and y acceleration plots. Data in blue is the second derivative of the measurements
from Vicon not used for fitting roll and pitch and data in red is the result of multiplying the
models found simulated with the inputs from the experiment times gravity Figure A.8

A.3.2 Yaw ARX model
The input for yaw in the RC is an angular rate reference, which can not be used as an input
when designing a position controller. Therefore, it is decided not to fit a model for yaw having
the RC as input. Since the drone has a position controller implemented, a test for finding a
model for yaw with a usable input can be designed by holding the drone in a specific position
and generating an input signal of yaw reference. The model found for yaw is then from yaw
reference to yaw, which describes the closed loop of a yaw controller.

Figure A.9: Yaw block diagram.

In the same way as in the models for roll and pitch, a portion of the data is fitted to a model
and this one is afterwards verified with a different set of measurements.
The orders considered for the ARX model from yaw references to yaw velocity are na = 1 and
nb = 1 since the dynamics are shown to be close to a first order system.

ψ̇(z) = Gψ(z)ψref(z) = 0.06215z−1

1− 0.9383z−1ψref(z) (A.27)
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In Figure A.10 the data extracted from the experiment is compared to a linear simulation of the
model found with the yaw reference inputs given during the flight.
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Figure A.10: Yaw plot. Data in blue are the measurements from Vicon used for fitting
the model and data in red is the result of simulating the model found with the inputs of the
experiment

A.3.3 Z ARX model
The input reference from the RC for thrust is scaled from 0 to 1. This value is related to z̈ as
explained in the modelling. Therefore, with a model from input to z̈, two integrators are added
to reach z.
To be able to fit the thrust input reference to the z acceleration linearly, it has to be taken into
account that the drone needs to have a certain thrust value (operating point) to overcome the
effect of gravity and thus take off and hover.
Consequently, acceleration values taken when the drone is in zero height won’t relate linearly to
the input. This way, only data from when the drone is flying is used for the fitting. First, the
values of z̈ are found y differentiating twice the measurements of z. Afterwards, following the
model found in Section A.2, gravity is added to these values. Then, a model for z̈ + g is found
with the thrust value as input.

Figure A.11: z block diagram derived from the simplified model.

It has to be taken into account that the input thrust to the drone is scaled from 0 to 1 and
therefore, the gain from thrust to acceleration won’t match with the values expected from the
model.
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z̈(z) = 16.71z−1Tref(z)− g (A.28)

Now, for control purposes, it is deemed to have an affine model,i.e. with zero input matching
with zero output. To do so, the thrust input value B matching with gravity has to be found as
explained in (A.29).

z̈(z) = 16.71z−1(T ∗ref(z) +B)− g

0 = 16.71(0 +B)− g

g = 16.71B (A.29)

This leads to the model shown in (A.30), with T ∗ref(z) = Tref(z)−B.

z̈(z) = Gz̈(z)T ∗ref(z) = 16.71z−1T ∗ref(z) (A.30)
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Figure A.12: z acceleration plot. Data in blue is the second derivative of the measurements
from Vicon used for fitting the model and data in red is the result of simulating the model
found with the inputs of the experiment. The model at the start of the experiment predicts an
acceleration of the value of gravity not show in the data due to the drone being on the floor.

To validate the model found, data from a different experiment is used with the model found
and the corresponding inputs. To compare the data with the model, the values of z̈ of the new
experiment are compared to the output of the model subtracting gravity to it.
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Figure A.13: z acceleration plot. Data in blue is the second derivative of the measurements
from Vicon not used for fitting the model and data in red is the result of simulating the model
found with the inputs of the experiment. The model at the start of the experiment predicts an
acceleration of the value of gravity not show in the data due to the drone being on the floor.

A.4 State-space description
It is decided to use state-space controllers designed according to the LQR/G paradigm for
the position controllers. Therefore, the models found in Section A.3 have to be transformed
into a state-space representation. Since the transfer functions of the variables are known, the
polynomials describing the poles and zeros of the each system are also known. This knowledge
can be used for expressing a state-space description in controllable canonical form.
Having a transfer function described as in (A.31), a state-space representation in controllable
canonical form can be found as described in (A.32).

Y (z) = b1z−1 + · · ·+ bnb
z−nb

1 + a1z−1 + · · ·+ anaz−na
U(z) (A.31)

χk+1 =



−a1 −a2 · · · −ana−1 −ana

1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0


χk +



1
0
0
...
0


uk

yk =
[
b1 b2 · · · bnb

01×(na−nb)
]
χk (A.32)
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A state-space representation is found for the ARX models of roll, pitch, yaw and z̈, and they are
consequently expanded with the desired integrators. The state-space representation of roll is
shown in (A.33), pitch is shown in (A.34), yaw in (A.35), and z̈ is shown in (A.36). These are
then used to find a state-space description of the full system shown in (6.6).

χφ
k+1 =


χφ,1
χφ,2
χφ,3
χφ,4


k+1

= Aφχφ
k +Bφφ

k
ref =


0.261 0.2374 0.1581 0.06463

1 0 0 0
0 1 0 0
0 0 1 0



χφ,1
χφ,2
χφ,3
χφ,4


k

+


1
0
0
0

φkref
φk = Cφχ

k
φ =

[
0.8608 −0.4211 −0.177 0

]
χkφ

(A.33)

χθ
k+1 =


χθ,1
χθ,2
χθ,3
χθ,4


k+1

= Aθχθ
k +Bθθ

k
ref =


1.187 −0.3037 0.1289 −0.1045

1 0 0 0
0 1 0 0
0 0 1 0



χθ,1
χθ,2
χθ,3
χθ,4


k

+


1
0
0
0

 θkref
θk = Cφχ

k
θ =

[
0.1938 0.1944 −0.3103 0

]
χkθ

(A.34)

ψk+1 = Aψψ
k +Bψψ

k
ref = 0.944ψk + 0.05639ψkref (A.35)

χk+1
z̈ = Az̈χ

k
z̈ +Bz̈T

k = T k

z̈k = Cz̈χ
k
z̈ = 16.71χkz̈

(A.36)
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

Hx
Hẋ
χθ
Hy
Hẏ
χφ
ψ

z
ż
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Hẏ
χφ
ψ

z
ż
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(A.37)

92 / 172



B Accelerometer model

In this chapter a simplified model of the 3-dimensional accelerometer, being part of the IMU
within the drone, is developed. As explained in Section 2.1, accelerometers are electronic sensors
that measure proper acceleration, also known as ’g-force’. At rest or at exact hover the proper
acceleration experienced by the drone is an upward pointing acceleration, see see Figure B.1(a),
equal to the opposite of the acceleration caused by gravity. At rest this can be used to give an
estimate of the attitude by extracting this opposite gravity vector from the individual directional
components, see Figure B.1(b). Though as shown in the following chapter the measurable
accelerations when flying corresponds only to the thrust vector which always points upwards.
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(a) Accelerometer on drone in hover with upward
thrust vector
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(b) Accelerometer at rest with surface providing
upward force

Figure B.1: Accelerometer model

A simplified model of a 3-dimensional accelerometer contains a small mass, ma, and three orthog-
onal spring-dampener connections to the housing of the accelerometer. At rest (on a surface)
the accelerometer mass will be exposed to the gravity of earth, see Figure B.1(b). Similarly,
the housing will be exposed to the same acceleration but will be provided with an equalling
upward force from the surface, resulting in zero acceleration of the housing. As the mass itself is
exposed to an acceleration while the housing is not, this will be measurable as an increase in
the length of the spring, d, allowing the accelerometer to measure the gravity component as an
upward acceleration. The dampener is included to model the asymptotically stable acceleration
measurement, whereof only including the spring would result in oscillations. The mathematical
model of a single axis is shown in (B.1).

za = z − d
maz̈a = cḋ+ kd

mad̈+ cḋ+ kd = maz̈

(B.1)
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When the accelerometer is mounted on a drone in hover, the force, previously supplied by the
surface, will instead be provided by the thrust vector from the propellers. As described above the
accelerometer will exactly in hover measure the gravity component as an upward acceleration.
However, if the drone is tilted and thereby not exactly in hover, the tilted thrust vector will
make both the drone and hence the accelerometer housing accelerate, while the mass within the
accelerometer would only be affected by gravity. See Figure B.2.
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Figure B.2: 2D accelerometer mounted on tilted drone

It is possible to put up a model for the 2D accelerometer to identify how a tilted roll angle, φ,
affects the accelerometer measurements. If the center of the drone is located at (y, z) and the
center of the accelerometer mass is located at (ya, za), assuming that the accelerometer frame is
aligned with the drone frame. Then let dy and dy denote the displacement of the accelerometer
mass.

za = z − dz
ya = y − dy

(B.2)

A dynamic model of the accelerometer mass is now derived:

maz̈a = − cos(φ)mag + cḋz + kdz

maÿa = − sin(φ)mag + cḋy + kdy
(B.3)

Inserting the relationship with the mass displacement:

mad̈z + cḋz + kdz = maz̈ + cos(φ)mag

mad̈y + cḋy + kdy = maÿ + sin(φ)mag
(B.4)

Another dynamic model is derived for the housing of the accelerometer:
mbz̈ = − cos(φ)mbg + FT

mbÿ = − sin(φ)mbg
(B.5)

Combining (B.4) and (B.5) yields a closed model of the displacements given the thrust vector
input and the roll angle:

mad̈z + cḋz + kdz = cos(φ)mag +ma

(
FT
mb
− cos(φ)g

)
mad̈y + cḋy + kdy = sin(φ)mag −ma sin(φ)g

(B.6)
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The accelerometer readings correspond to the spring displacements, dy and dz. When the
accelerometer mass has settled, and hence the displacement derivatives are zero, it is apparent
that the accelerometer is only be able to measure the thrust vector component.

kdz = ma

mb
FT

kdy = 0
(B.7)

All information about the tilted roll angle and the gravity vector is lost. The roll and pitch
angles are therefore not easily estimated using the accelerometer. Although, if a simple velocity
based wind resistance model is included, components of the accelerometer end up acting like a
velocity sensor.
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Figure B.3: Wind resistance model added to a tilted drone

If the drone is tilted as shown in Figure B.2 it will accelerate to the right, resulting in an increasing
velocity to the right, v. This would create a wind resistance force in the opposite direction,
Fw = cwv, making the steady state x- and y-components of the accelerometer measurements
proportional to the wind velocity.

mbÿ = − sin(φ)mbg + cos(φ)Fw
kdy = cos(φ)ma

mb
cwv

(B.8)
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C GOT indoor positioning system

The GamesOnTrack system is an indoor positioning solution based on a transmitter-receiver
configuration using a combination of ultrasound-waves and radio communication.

Figure C.1: GamesOnTrack system showing two satellites and one beacon [6]

The system consists of a transmitter, denoted as beacon, mounted to the object which needs
to be located in a room where several receivers, known as satellites, are installed. At given
timestamps the beacon sends an identifiable ultrasound pulse which is captured by the individual
satellites. Simultaneously to the transmission of the ultrasound pulse the transmitter sends a
message to all satellites over an RF channel with the timestamp of the just sent ultrasound pulse.
This allows all receivers to independently determine the time-of-flight of the ultrasound pulse
to their specific location. Every time-of-flight measurement is converted into a distance using
the speed of sound. Through a calibration procedure the positions of all satellites, denoted the
satellite configuration, are determined initially. With the distance measurements from the beacon
to the individual satellites and with a known satellite configuration it is possible to perform a
trilateration to determine the position of the beacon, see Figure C.2.

Figure C.2: Example of trilateration with GPS satellites [34]
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At least four distance measurements from four satellites are necessary to uniquely determine the
position of the beacon. With only distance measurements to three satellites, the trilateration
will result in two possible positions. If the satellite configuration is installed in such a way that
one of these positions is always invalid, it will be sufficient to use just three measurements at
all times. This behaviour comes pre-programmed in a USB-connected GOT controller which
takes care of both capturing the time-of-flight measurements and determining the position from
trilateration. The GOT system can therefore be seen as a black-box sensor capable of providing
measurements of the drone position.

Unfortunately the GOT system suffers from problems with deadzones or bad position estimates,
just as the regular GPS system does when navigating in closely packed cities with tall buildings.
As the GOT system is using ultrasound-waves the system is less vulnerable to multi-path effects
due to the less energy in the ultrasound-waves, but the ultrasound-waves can still bounce uncon-
trollably from the objects in the environment causing unexpected behaviour of the determined
position. As a consequence of using ultrasound-waves the system becomes more vulnerable to
loss of sight and thus requires the beacon to always be in line-of-sight to at least three satellites.
These unknown, unexpected and assumed unforeseeable errors with the position measurement
from the GOT sensor deems it necessary to develop a position estimator that can take other
measurements into account, as it is the case with this project where measurements from an RGB
and depth camera is used.

Assuming that a small single emitter beacon is used, being the ones provided for the project,
each satellite has a range of approximately 7-8 m [35]. As long as the transmitter is visible
and within range of at least 3 satellites at all times the GOT system is capable of providing
position measurements with an accuracy down to approximately 10 mm [36]. The update rate of
the position measurements depends on the number of beacons. With a single beacon the GOT
system is capable of providing position measurements at a rate of approximately 10 Hz.
This rate is limited due to the GOT design where an ultrasound package has a length of 50 ms
together with the maximum possible distance of 8 m yielding approximately another 25 ms. For
each extra beacon added the rate is halved as the ultrasound transmission channel has to be split
equally. Within this project only one beacon is used why the update rate is assumed to be 10 Hz.

For the specific setup in the Motion Tracking lab on Fredrik Bajers Vej the following covariance
matrix of the measurement noise has been estimated by a former group [7].

ΣGOT =

 0.225 −0.038 0.022
−0.038 0.025 −0.009
0.022 −0.009 0.014

 · 10−4 m2 (C.1)

Where:
ΣGOT covariance of measurements from GOT with given

setup

[
m2
]

This covariance together with the previously mentioned specifications of the system is used as
the initial design parameter when designing and simulating the position estimator but will be
adjusted as a tuning parameter if necessary.
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In Chapter 3 the SLAM problem is introduced and the constraint graph visualizing the problem
is shown in Section 3.1. Another way of modelling the SLAM problem when including the
probabilistic constraints, hence another way of modelling the Bayesian network, is as a Growing
Markov random field, see Figure D.1. The Bayesian network graph in Figure 3.1 can be simplified
by including the constraints imposed by the measurements, as direct link between the hidden
variables. This is known as a Markov random field abbreviated MRF. In the case of sequential
stream of measurements this MRF would continuously grow resulting in the MRF shown in
Figure D.1.

s1 s2 s3 s4 sk

l1 l2 l3 l4 l5 l6 lN

Figure D.1: Growing Markov random field [12]

Two common approaches to solve such an MRF and find the pose and map variables at a given
timestep, given that all measurements are known, is either through recursive filtering or by
performing an offline global optimization over the whole network. Related to the SLAM problem
and especially within the field of 3D position estimation, such offline global optimizations are
known as Bundle Adjustments.

In this appendix algorithms within these two approaches, solving the Markov random field in
Figure D.1, are considered. The approaches are categorized as:

1. Filtering-based, eg. Bayesian SLAM

2. Keyframe-based, eg. Graph SLAM

The appendix describes the difference between these two categories and presents a few of the
commonly used state-of-the-art implementations contained within each category.

D.1 Filtering-based SLAM
To use SLAM within control applications, eg. robotics, the pose estimates would need to come
in a realtime sequential stream such that each new measurement also yields a new estimate. One
way to do so is through filter-based methods. Filtering-based SLAM marginalizes out the past
poses and keeps instead a joint probabilistic estimate of the current pose and map. Whenever
a new measurement arrives, a prediction of the drone pose is added to the network (MRF)
whereafter the previous drone pose is marginalized out and the whole network is updated based
on the arrived measurement. This is known as Recursive Bayes filtering, see Section E.2.
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s1 s2 s3 s4 sk

l1 l2 l3 l4 l5 l6 lN

Figure D.2: Bayesian Network [12]

Applying the marginalization to the global MRF example shown in Figure D.1 results in the
Bayesian network shown in Figure D.2. The past drone poses which are marginalized into the
distribution of the current pose are marked as grey circles. Due to the marginalization proba-
bilistic links are introduced between every pair of landmarks. Even though the filtering-based
SLAM contains less nodes than the MRF, on which global optimization was possible, one could
say that the filtering-based SLAM does not contain less information as the extra links contain
the marginalized information.

Existing state-of-the-art filtering-based SLAM implementations include:

• EKF-SLAM

• Particle filter SLAM - FastSLAM 1.0 and 2.0

• MonoSLAM

• Information filter SLAM

• UKF-SLAM

A short description of EKF-SLAM, MonoSLAM and FastSLAM, being some of the most commonly
used state-of-the-art implementations within Filtering-based SLAM, is given in the following
sections. For further descriptions and comparisons between EKF, UKF, FastSLAM and an
optimized FastSLAM the reader is referred to [37].

D.1.1 EKF-SLAM
One way of implementing Bayesian SLAM is by using an Extended Kalman Filter, see Section E.5,
which is just one type of implementation of the Bayes filter, see Section E.2. In the case of
using an Extended Kalman Filter for SLAM, also known as EKF-SLAM, the state vector of
the estimator will include the full drone pose and position of all mapped landmarks. At each
timestep the Kalman filter prediction and correction step is performed, taking in all available
measurements of detected landmarks. As the number of mapped landmarks increases, the state
vector and hence also the covariance matrix inside the Kalman filter grows. By comparison
this would correspond to the constraints in the Bayesian Network growing unbounded as new
measurements arrive as described previously. This makes EKF-SLAM more computationally
heavy as this growing number of constraints has to be handled.

So at the cost of computational power and memory consumption EKF-SLAM maintain a joint
probability density estimate of the current pose and map in a more efficient manner than
keyframe-based SLAM, which keeps no such uncertainty estimate.
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Most of the time the higher accuracy provided by the commonly used sensors within Visual SLAM,
eg. cameras or depth sensors, makes it practically unnecessary to calculate such uncertainty,
though this uncertainty is helpful if the algorithm is fused with other sensors.

D.1.2 MonoSLAM
As mentioned with both EKF-SLAM and FastSLAM both algorithms were originally developed
and intended for simple measurements such as distance sensors and odometry inputs. In the early
2000s though A. Davison brought vision into the world of filtering-based SLAM by introducing
his MonoSLAM approach performing EKF-SLAM with a single camera [38]. The EKF-SLAM
approach was extended to include the 3D position of landmarks and the pose extended to
six dimensions, hence extending the dimension of the otherwise sparse map well known to
filtering-based SLAM approaches. This opens up for the possibility of using 3D measurements of
the landmarks within the environment to correct the estimate. Although a single camera does
not provide 3D measurements and instead contains the problem of unrecovered scale, Davison
proposed a probabilistic initialization of the 3D position of landmarks before inserting them
into the map, later known as inverse depth parametrization. When detecting a new landmark
a probability distribution of its’ inverse depth estimate is iteratively updated through frame-
to-frame matching. This allows the depth and thereby the 3D position of a landmark to be
determined before it is inserted into the map.

Figure D.3: Example of filtering-based SLAM, Notice the large depth uncertainty of the
uninitialized landmark (yellow line) [38]

For camera measurements to result in actual uniquely identifiable landmark measurements to be
used as input to EKF-SLAM, Davison proposed a method of finding salient image patches within
the image and extract these as landmarks. Whenever a new salient feature is found, an image
patch of 11× 11 pixels is stored temporarily together with the inverse depth parametrization.
This allows the image patch to be rediscovered and thus the fully inverse depth to be estimated
over a short amount of time. After the depth has been estimated the landmark, now defined by
its’ image patch, identifier and 3D location, is inserted as a landmark into the map of EKF-SLAM,
hence inserted as a part of the state vector.

D.1.3 Particle filter SLAM
One of the assumptions when using EKF-SLAM is that the pose estimate can be approximated
by a Gaussian distribution and hence assumed unimodal but with the benefit of using very simple
parametrizations of the continuous distribution. On the other hand a Bayes filter working on
discrete distributions is able to describe any kind of distribution but at the cost of discretization.
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When navigating around in an environment, observing only a few landmarks, one can easily end
up in multi-modal situations where multiple viewing angles of the same subset of landmarks will
yield the exact same measurement. This is both a consequence of the measurement sensor, in this
case an RGB-D camera which projects the 3D world onto 2D image planes, and a consequence of
seeing few landmarks. EKF-SLAM will in this case not be able to approximate such multi-modal
distribution and will likely diverge if such a situation is experienced.

One solution to this problem is to use a discrete approximation of the estimated pose distribution
which can be contained and handled with a Particle Filter, see Section E.8. In general the
functionality of a Particle Filter is similar to the discrete implementation of the Bayes filter
known as the Histogram Filter. Where the Histogram Filter contains individual containers for the
probability each possible but discretized pose estimates, the Particle Filter takes the Monte-Carlo
approach by spawning a certain amount of particles which each is described by a pose estimate.
In areas of the discrete probability distribution with high probability a lot of particles will be
gathered whereof low-probability areas will only have a few or no particles.

Figure D.4: Particle filter example approximating a Gaussian distribution [39]

When performing corrections on the particle filter, incorporating measurements, a weight is
calculated for each particle based on the likelihood of the single particle experiencing the given
measurement. The collection of weights resembles the desired posterior distribution and thus
defines how the particle distribution should look after resampling. In short, the resampling
consists of duplicating particles with high weight and removing particles with low weight.
The Particle Filter can be used to solve the probabilistic SLAM problem but the large and
growing state vector will make such an implementation computationally infeasible. Such an
implementation will also yield worse results than EKF-SLAM as almost infinite numbers of
particles would be necessary to reasonably well describe the estimated pose distribution due to
the large state space.

FastSLAM
The computational problem of filtering-based SLAM has been approached by several researchers
but the state-of-the-art method simplifying the problem is known as FastSLAM proposed in 2002.
The FastSLAM algorithms utilise the definition of conditional probability to split the SLAM
problem into two sub-problems, one estimating the pose of the drone and another estimating the
location of all landmarks within the map, see Section E.9.

p(s,M | u, z) = p(s | u, z)
N∏
i=1

p(li | s, z) (D.1)
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Assuming conditional independence between all landmarks within the map, the posterior can
be factorized into the probability of the pose given the map and the product of the individual
probabilities of each landmark within the map, as shown in (D.1). If one then assumes that
the individual landmark estimates can be described by Gaussian distributions the individual
landmark probabilities can be contained within many individual but small Extended Kalman
Filters. This allows the estimation of the pose to be governed by a particle filter and the
estimation of the map of landmarks to be governed by individual and independent Extended
Kalman Filters. The independency stems from the fact that all landmarks are only dependent of
each other if the location of the pose is not known, as shown with the constraints in Figure D.1.
As described previously each particle within the particle filter represents a given possible pose,
why the pose is known to the landmarks within a certain particle such that each landmark
become independent and can be estimated and handled individually. This approach also known
as the Rao-Blackwellized particle filter being a combination of the particle filter and the Kalman
filter, where each particle has one or more Kalman filters associated to them [40].
FastSLAM has become the most commonly used filtering-based SLAM algorithm especially used
with odometry sensors, such as wheel encoders and distance sensors such as laser or ultrasound
as perception input. Filtering-based SLAM is in general limited in the number of landmarks
that can be included and the number of degrees of freedom to estimate. This is the reason that
filtering-based methods are usually used within 2D robotic applications.

FastSLAM 2.0
As the FastSLAM algorithm is still a discrete approximation of the pose estimate distribution a
very accurate motion model or a certain minimum amount of particles is needed for the filter to
be able to track the correct pose. At state vectors of low dimensionality this works out nicely with
just a few hundred particles but if the dimension of the state vector becomes larger than 3 states
one would likely need more than thousand particles to be able to represent the pose distribution
equally well. Hence a need of further optimization of the algorithm was needed, which has been
the research topic for several of the FastSLAM researchers after the initial presentation.

In 2003 an improved version of FastSLAM was proposed called FastSLAM 2.0. The main
difference which makes FastSLAM 2.0 more efficient than its’ predecessor is how measurements
are included in the proposal distributions defining the distribution used when prediction the pose
of a given particle, see Section E.9. By including the current measurement the uncertain motion
model will thus be narrowed down and the prediction of the particles will be concentrated to
poses where it is more likely to experience the given measurement, see (7.10). This allows less
particles to be used, hence lowering the computational requirement, while the estimate is still
tracking the pose well. A good overview of previous work with FastSLAM and 3D measurements
can be found within [41] however using a stereo-camera set-up.

D.2 Keyframe-based SLAM
Another way to get realtime sequential position estimates is with Keyframe-based SLAM which
adapts the unbounded global optimization problem, the offline Bundle Adjustment, to sequential
processing of a video stream by separating the process into two parallel threads. One thread runs
at a fast rate (full camera frame rate) which estimates the pose from the known features already
existing in the map, calculating an initial pairwise transformation estimate. A second thread
runs at a much slower rate performing the global optimization over all the tracked features and a
selected set of stored keyframes (pose and map), thereby minimizing the reprojection error and
refines the initial pairwise estimation into a globally consistent one.
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Some Keyframe-based approaches stores only the past few frames, while others store frames
at different locations eg. when detecting and inserting new landmarks into the map which is
usually done when the amount of tracked landmarks are sparse, see Figure D.5. In this sense
the Keyframe-based SLAM differ in many ways from the previously dominant filtering-based
approaches such as EKF-SLAM or FastSLAM mentioned in Section D.1.

Figure D.5: Keyframes and landmarks stored for Global Bundle Adjustment [11]

Instead of marginalizing out previous poses and summarizing all information into one probability
distribution, as with the filtering-based SLAM, Keyframe-based approaches retain a selected
subset of previous observations, called keyframes, explicitly representing past knowledge shown
as the solid black circles in Figure D.6. These keyframes are used in the optimization (Bundle
Adjustment) to estimate the pose, trajectory and landmark map, whereof the grey circles marks
the keyframes which are not stored for optimization. The constraints to these keyframes, hence
possibly valuable information, are thus lost, eg. the link between l3 and l4 through s3 in Figure D.6.

s1 s2 s3 s4 sk

l1 l2 l3 l4 l5 l6 lN

Figure D.6: Keyframe-based SLAM includes a graph of keyframes and constraints [12]

The pairwise transformation estimation is usually performed through an iterative process, eg.
Iterative Closest Point, in where the Euclidean distance between two consecutive keyframes,
containing the detected landmarks within that keyframe, are minimized to get the transformation
between the two adjacent frames. Other methods to perform the pairwise estimation includes
MICP, GICP or 3D-RANSAC which helps to remove possible outliers by fitting the measure-
ments to a model instead of just minimizing the Euclidean distance [42].It is apparent that the
keyframes and the resulting constraints can be described by a graph as shown in Figure D.6.
This allows graph-based optimization techniques to be used for the global optimization. Due to
the graph-based structure, Keyframe-based SLAM algorithms are also classified as Graph SLAM.
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Existing state-of-the-art Keyframe-based SLAM implementations include:

• DTAM

• PTAM

• RGB-D SLAM

• ORB-SLAM

• SVO

• LSD-SLAM

A short description of the most commonly used, being PTAM, ORB-SLAM and RGB-D SLAM
is provided below.

D.2.1 DTAM and PTAM
Simultaneous to the research done within MonoSLAM an interest for realtime tracking and
mapping using monocular cameras was formed within computer vision groups. PTAM, an abbre-
viation of Parallel Tracking and Mapping, was presented in 2007 [43] intended for Augmented
Reality (AR) applications using handheld cameras where rapid unmodelled motion is likely to
occur. Similar to MonoSLAM the objective is to estimate the 6-dimensional pose containing
the current camera location and orientation. The research within PTAM identifies the main
issues of the filtering-based methods, eg. EKF-SLAM and MonoSLAM, as the dependency on
a well-fitting motion model to predict a prior pose to assure correct feature matching. When
applying these methods to hand-held cameras instead of robots, in where the motion can be
both rapid and irregular, these algorithms were likely to diverge or do incorrect mapping.

The work of PTAM splits the problem into two parallel threads, one doing the realtime tracking
and another doing the mapping. The tracking thread receives the incoming images from the
hand-held camera from which coarsest-scale features are extracted. A simple motion model is
used to generate a prior pose such that the landmarks within the built map can be projected
onto the current image plane and used together with the extracted features to update the pose
estimate. The pose is updated by iteratively minimising a robust objective function of the repro-
jection error. This results in fast tracking of the pose, although depending on an already built map.

When the system is started the map itself will be empty and has to be initialized. The map is
densely initialised from a stereo keyframe pair resulting from just a small translational movement
of the camera and landmarks are inserted into the map based on a 5-Point algorithm. The other
thread doing the mapping hereafter evaluates when to insert new keyframes and landmarks into
the map, depending on the actual movement. Many sequential images contain redundant infor-
mation, particularly when the camera is not moving. MonoSLAM and other incremental systems
would waste their time re- filtering the same measurement image after image, though PTAM will
only focus on a smaller number of useful and cleverly selected keyframes. Landmarks however
will be continously added based on an epipolar search originating from the extracted features.
Whenever new keyframes are added to the map a Global Bundle Adjustment is performed to
optimize and adjust the pose of all keyframes and location of landmarks in such a way that the
constraints are tightened. Even though the optimization might easily take tens of seconds to
converge when 150 keyframes or more are included, the mapping thread can run at a much lower
rate than the tracking thread without ruining the tracking.

105 / 172



Chapter D. SLAM algorithms

PTAM use the FAST corner detector to extract coarsest-scale features to use to limit the number
of landmarks within the map, hence reducing the computational requirements. In 2011 PTAM was
extended to DTAM focusing on Dense Tracking and Mapping [44]. Reliying on high-performance
GPU systems DTAM removes the feature extraction part of PTAM and instead includes all
possible measurements, being all pixels, in both the tracking and mapping thread. The result,
as seen in Figure D.7, is a much more dense point-cloud of landmarks. A point-cloud from
which it is clearly possible to identify the structure of objects in comparison to PTAM where the
individual features are more of less arbitrary scattered.

Figure D.7: Comparison between DTAM (left) and PTAM (right) [44]

Performing the Bundle Adjustments on the dense maps of DTAM requires tremendous amounts
of compational power why DTAM is usually only used when mapping is the primary objective.
Although PTAM was designed specifically for AR applications and only works well in smaller
environments where global map management is not needed, the method of parallelizing tracking
and mapping and the way of doing keyframe-based map management is used by most of todays
state-of-the-art feature-based visual SLAM systems, eg. ORB-SLAM and SVO [11].

D.2.2 ORB-SLAM
Unfortunately some caveats were later discovered with PTAM where tracking would be likely to
fail at occlusions or severe motion clutter or in environments where only few features can be
found. Lastly PTAM does not handle loop closures in any careful way, why the tracking can
easily diverge if an incorrect loop closure is made.

ORB-SLAM is a more traditional feature based system but quite similar to PTAM. ORB-SLAM
was presented in 2015 [45] as a new and efficient way of doing Visual SLAM using monocular or
stereo cameras with a highly improved performance in practice compared to PTAM. Its main
improvement compared to PTAM includes but are not limited to:

1. Implements 3 parallel threads for tracking, mapping, and loop closure. This allows ORB-
SLAM to achieve consistent localization and mapping. In comparison PTAM does not
have loop closure.

2. Automatic map initialization by calculating the initial homography and fundamental
ego-motion of the camera using RANSAC on a set of different models. In comparison
PTAM requires manual operation to finish initialization.
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3. Use ORB feature detector and descriptor instead of image patches used in PTAM. The
ORB detector improves the robustness of image tracking and feature matching under scale
and orientation changes, where the image patches within PTAM is likely to fail.

4. Multi-scale mapping, including several graphs on which Bundle Adjustments (BA) are
performed. A local graph for pose BA, a co-visibility graph for local BA and an essential
graph for global BA after loop closure detection.

The benefits of using ORB-SLAM over PTAM is the increased performance and robustness.
Whereas PTAM uses FAST corners for feature extraction ORB-SLAM uses an extension to this
being oriented multi-scale FAST corners defined as Oriented Brief. These features are faster to
extract and both rotation and scale invariant, hence increasing the robustness as features are
easier to rediscover from different viewing angles. Thereby using this improved image feature
detector and descriptor allows ORB-SLAM implementations to achieve real-time performance on
regular desktop CPUs which other feature detectors such as SIFT or SURF, see Section 3.3.1,
cannot provide [11].

D.2.3 RGB-D SLAM
Finally if measurements are provided by an RGB-D camera, as it is the case within this
project, providing both an RGB image and a disparity (depth) image, the sparse RGB-D SLAM
implementation from 2012 [46] is an interesting way to use the keyframe-based SLAM approach
presented above with RGB-D measurements. The implementation is very similar to PTAM or
ORB-SLAM except that the RGB image is mainly used for finding salient features which are
then projected into the depth image to pick salient point from the generated point-clouds. This
removes the need for a specific initialization of the map as the depth measurements are always
given. A flowchart diagram of the RGB-D SLAM algorithm in shown in Figure D.8.

Figure D.8: RGB-D SLAM algorithm flowchart, [46]
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Whenever the RGB-D SLAM receives a set of images, RGB and depth, a set of salient features is
extracted from the RGB image using an efficient and invariant feature detector, see Section 3.3.1,
similar to how it is done within PTAM and ORB-SLAM. These features then decide which points
to pick from the generated point-cloud based on the depth image, and the RGB image is thus
only used to extract salient features from the point-cloud.

The extracted set of points are then used in a similar fashion as extracted features within
PTAM and ORB-SLAM. Within the tracking thread the points are used to calculate a pairwise
6-dimensional transformation between the previous keyframe and the currently extracted points.
This results in an realtime pose estimate. The extracted points are further applied to the
global optimization and loop-closure algorithms running at a slower rate within the mapping
thread. This allows stored keyframes consisting of pose estimates and recorded point-clouds to
be optimized, tightening their constraints which improves the map and keeps it consistent.

D.3 Comparison between algorithms
Based on the descriptions of the different algorithms within this appendix and a deeper analysis
of their capabilities and requirements, a recommendation chart shown in Figure D.9 is drawn.
This diagram recommends certain SLAM implementations, though without limiting, depending
on different properties and design considerations of the system. Especially the computational
cost is considered but also the complexity of the implementation [47].

Figure D.9: Recommended SLAM algorithm depending on use-case
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E Estimation Theory and Methods

This appendix presents different methods for estimating a state vector based on knowledge about
a model of a system, a model of how measurements are obtained, and actual measurements.
Initially a common list of probability theorems and terms is introduced to the reader followed by
a presentation of the recursive Bayesian Estimator in Section E.2. In Section E.3 and Section E.4
prerequisites for the derivation of the Discrete Extended Kalman Filter are presented. The
Discrete Extended Kalman Filter, being a special case of the Bayesian Estimator, is presented
in Section E.5. In Section E.8 the particle filter is presented which can best be described as a
numerical implementation of the Bayesian Estimator.

E.1 Common probability theorems and terms
Throughout both this appendix and the report, terms such as ’a priori’ and ’a posteriori’ estimates
are used including a pipe notation indicating the time of included empirical evidence within an
estimate

• a priori: is used about estimates at time k that are not based on empirical evidence
obtained at time k. E.g. an a priori estimate of a state vector at time k could be obtained
by using a motion model and will be denoted as χ̄k|k−1.

• a posteriori: is used about estimates at time k that are based on empirical evidence
obtained at time k. E.g. when observed measurements are incorporated into an a priori
estimate resulting in an estimate denoted as χ̄k|k.

Besides that, the symbol p is used to denote a probability density function, which is abbreviated
as PDF. Furthermore is the following common probability theorems are used in the derivations
in the following sections, and the reader should be familiar with those.
Bayes’ formula:

p(x, y) = p(x | y) p(y) = p(y | x) p(x) (E.1)

p(x | y) = p(x, y)
p(y) = p(y | x) p(x)

p(y) (E.2)

= ηp(y | x) p(x) (E.3)
∝ p(y | x) p(x) (E.4)

Bayes’ formula can also easily be extended to multiple variables being either jointly distributed
or conditioned:

p(x, y, z) = p(x, y | z) p(z) (E.5)
p(x, y, z) = p(x | y, z) p(y, z) (E.6)

(E.7)

If a joint probability is conditioned on a random variable, applying Bayes’ formula will result in
all terms being conditioned on this variable:

p(x, y | z) = p(x | y, z) p(y | z) (E.8)
(E.9)
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Marginalization of joint distributions:

p(x) =
∫
p(x, y) dy (E.10)

E.2 Recursive Bayesian State Estimator
A recursive Bayesian state estimator tries to recursively approximate the conditional PDF

p(χk | z1:k) (E.11)

Where:
χk is the state vector of the system at time k
z1:k is the set of all measurement available up to time k

In this section a system and measurement model given on the form in (E.12) and (E.13),
respectively, are assumed [30].

χk = fk−1
(
χk−1,wk−1

)
(E.12)

zk = hk
(
χk,vk

)
(E.13)

Where:
fk−1 (•) is the time-varying system model
hk (•) is the time-varying measurement model
χ is the state vector
w is a noise variable called the process noise
v is a noise variable called the measurement noise

The process noise, w, and measurement noise, v, are assumed to be independent and white.
Furthermore, it is assumed that p(χ0 |z0) = p

(
χ0
)
is known. With these assumptions a recursive

estimator of the PDF in (E.11) can be derived [30]. This recursive estimator can be summarised
by the formulas given in (E.14) and (E.15).

p(χk | z1:k−1) =
∫
p(χk | χk−1)p(χk−1 | z1:k−1) dχk−1 (E.14)

p(zk) = p(χk | z1:k) = p(zk | χk) p(χk | z1:k−1)
p(zk | z1:k−1) = p(zk | χk) p(χk | z1:k−1)∫

p(zk | χk) p(χk | z1:k−1) dχk (E.15)

These equations are very general and could in principal be applied to a broad range of prob-
lems. Unfortunately, analytical solutions to these equations are often hard to derive, and thus
approximations are often used instead.

E.2.1 Properties
The good thing about this kind of estimator is that all the statistical properties about the state
vector at time k, χk, are available, since the full PDF is approximated. Thus, the estimate of
the state vector, χ̂k, can be chosen freely using the PDF. To emphasize that this is indeed a
good feature of an estimator, consider the PDF shown in Figure E.1.
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Figure E.1: Example of a multimodal PDF

Using the mean, χ̄k = 0, as an estimate of the variable with the PDF given in Figure E.1 would
probably not be beneficial, since p

(
χk = 0

)
= 0. Thus, knowing the entire PDF, other features

could be chosen as an estimate for the state vector. For example those values of the state vector,
χk, that locally maximizes the PDF could be chosen as estimates. In the example above this
would result in an estimate being both χ̂ = −2 and χ̂ = 2.

E.3 Propagation of States and Covariances Through
Linear Discrete Systems

In the following a model on the form given in (E.16) is assumed.

χk = Fχk−1 +Guk−1 +wk−1 (E.16)

Where:
F is a model dynamics matrix
G is an input matrix
χ is the state vector
u is a known input to the system
w is a noise variable called the process noise

In this section it is assumed that w has zero mean and known covariance, i.e.

wk ∼
(

0,Cov
(
wk
))

(E.17)

The mean, χ̄k, of χk, is calculated as the expected value of (E.16):

χ̄k = E
[
χk
]

(E.18)

= E
[
Fχk−1 +Guk−1 +wk−1

]
(E.19)

= E
[
Fχk−1

]
+ E

[
Guk−1

]
+ E

[
wk−1

]
(E.20)

= F χ̄k−1 +Guk−1 (E.21)

And the covariance can be calculated as:
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Cov
(
χk
)

= E
[(
χk − χ̄k

) (
χk − χ̄k

)T ]
(E.22)

= E
[(
Fχk−1 +Guk−1 +wk−1 −

(
F χ̄k−1 +Guk−1

))
(E.23)

(
Fχk−1 +Guk−1 +wk−1 −

(
F χ̄k−1 +Guk−1

))T]
(E.24)

= E
[(
F
(
χk−1 − χ̄k−1

)
+wk−1

)(
F
(
χk−1 − χ̄k−1

)
+wk−1

)T]
(E.25)

= E
[
F
(
χk−1 − χ̄k−1

) (
χk−1 − χ̄k−1

)T
F T +wk−1

(
wk−1

)T
+ (E.26)

F
(
χk−1 − χ̄k−1

) (
wk−1

)T
+wk−1

(
χk−1 − χ̄k−1

)T
F T

]
(E.27)

From (E.16) and (E.21) it is evident that χk−1 and wk−1 are uncorrelated, and that χ̄k−1 and
wk−1 are uncorrelated. Therefore

(
χk−1 − χ̄k−1

)
and wk−1 must also be uncorrelated. Thus

(E.27) reduces to

Cov
(
χk
)

= E
[
F
(
χk−1 − χ̄k−1

) (
χk−1 − χ̄k−1

)T
F T +wk−1

(
wk−1

)T ]
(E.28)

= FCov
(
χk−1

)
F T + Cov

(
wk−1

)
(E.29)

E.4 Optimal Affine Recursive Least Squares Estima-
tion

This section describes a affine recursive least square estimator on the form given in (E.30) that
minimizes the sum of variances of the estimation errors [30]. This type of estimator is intended
for estimating a random variable, χ, based on several noisy measurements of that variable, zi,
taken at the same time instant.

χ̂i = χ̂i−1 +Ki (zi − ẑi) (E.30)

Where:
χ̂i is the estimate after incorporating the i’th measurement
zi is the i’th independent measurement
ẑi is an estimate of the i’th measurement calculated based on the

measurement model and the current best estimate, χ̂i−1
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In this section a measurement model on the form in (E.31) is assumed.

zi = H iχ+ yi + vi (E.31)

Where:
H i is a known matrix of the measurement model
yi is a known vector of the measurement model
vi is a noise variable, adding uncertainty to the i’th measurement,

that is assumed to be unknown

Since the value of v and the true value of χ are unknown, the best estimate of the measurement
is thus ẑi = H iχ̂i−1 + yi. This estimator has an estimation error mean of

E [εi] = E
[
χ− χ̂i

]
(E.32)

= E
[
χ− χ̂i−1 +Ki (zi − ẑi)

]
(E.33)

= E
[
εi−1 −Ki

(
H iχ+ yi + vi −

(
H iχ̂i−1 + yi

))]
(E.34)

= E
[
εi−1 −KiH i

(
χ− χ̂i−1

)
−Kivi

]
(E.35)

= E
[
εi−1 −KiH iεi−1 −Kivi

]
(E.36)

= (I −KiH i)E
[
εi−1

]
−KiE [vi] (E.37)

Thus if E [vi] = 0 and E
[
εi−1

]
= 0 then E [εi] = 0, which is achieved if vi is zero mean and

χ̂0 = E [χ]. If this is satisfied then this is an unbiased estimator no matter what value is chosen
for Ki. Noting that E [εi] = 0 the sum of the variances of the estimation errors at time k, can be
written as

E
[(
χ1 − χ̂i,1

)2
]

+ ...+ E
[(
χn − χ̂i,n

)2
]

= E
[
ε2
i,1 + ...+ ε2

i,n

]
(E.38)

= E
[
εTi εi

]
(E.39)

= E
[
Tr
(
εiε

T
i

)]
(E.40)

= Tr
(
E
[
εiε

T
i

])
(E.41)

= Tr
(
Cov (εi)

)
(E.42)
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and the covariance of the estimation error at time k can be calculated by:

Cov (εi) = E
[
εiε

T
i

]
(E.43)

= E
[(
χi − χ̂i

) (
χi − χ̂i

)T ] (E.44)

= E
[(

(I −KiH i) εi−1 −Kivi
) (

(I −KiH i) εi−1 −Kivi
)T ] (E.45)

= E
[(

(I −KiH) εi−1 −Kivi
) ((

(I −KiH) εi−1
)T − (Kivi)T

)]
(E.46)

= E
[(

(I −KiH i) εi−1
) (

(I −KiH i) εi−1
)T − ((I −KiH i) εi−1

)
(Kivi)T − (E.47)

Kivi
(
(I −KiH) εi−1

)T +Kivi (Kivi)T
]

= E
[
(I −KiH) εi−1ε

T
i−1 (I −KiH)T − (I −KiH) εi−1v

T
i K

T
i − (E.48)

Kiviε
T
i−1 (I −KiH)T +Kiviv

T
i K

T
i

]
= (I −KiH)E

[
εi−1ε

T
i−1

]
(I −KiH)T − (I −KiH)E

[
εi−1v

T
i

]
KT

i − (E.49)

KiE
[
viε

T
i−1

]
(I −KiH)T +KiE

[
viv

T
i

]
KT

i

= (I −KiH) Cov
(
εi−1

)
(I −KiH)T − (I −KiH)E

[
εi−1v

T
i

]
KT

i − (E.50)

KiE
[
viε

T
i−1

]
(I −KiH)T +KiCov (vi)KT

i

From (E.37) it should be evident that εi−1 is independent of vi, and still assuming vi to have
zero mean, that is E [vi] = 0, the following is true

E
[
εi−1v

T
i

]
= E

[
εi−1

]
E
[
vTi

]
= 0 (E.51)

E
[
viε

T
i−1

]
= E [vi]E

[
εTi−1

]
= 0 (E.52)

Therefore the covariance equation is simplified to:

Cov (εi) = (I −KiH i) Cov
(
εi−1

)
(I −KiH i)T +KiCov (vi)KT

i (E.53)

which is an recursive formula for the estimation error covariance, Cov (εi). In [30] a set of useful
algebraic rules are derived. If B is a symmetric matrix the following derivative is easily found:

dTr
(
ABAT

)
dA

= 2AB (E.54)

And another useful rule when manipulating with the trace of matrices:

Tr (A+B) = Tr (A) + Tr (B) (E.55)

By noting that covariance matrices are symmetric the derivative of Tr
(
Cov (εi)

)
becomes
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dTr
(
Cov (εi)

)
dKi

=
dTr

(
(I −KiH i) Cov

(
εi−1

)
(I −KiH i)T +KiCov (vi)KT

i

)
dKi

(E.56)

=
d

(
Tr
(
(I −KiH i) Cov

(
εi−1

)
(I −KiH i)T

)
+ Tr

(
KiCov (vi)KT

i

))
dKi

(E.57)

=
dTr

(
(I −KiH i) Cov

(
εi−1

)
(I −KiH i)T

)
dKi

+
dTr

(
KiCov (vi)KT

i

)
dKi

(E.58)

=
dTr

(
(I −KiH i) Cov

(
εi−1

)
(I −KiH i)T

)
dKi

+ 2KiCov (vi) (E.59)

Defining A = I −KiH i and using the chain-rule

dTr
(
Cov (εi)

)
dKi

=
dTr

(
ACov

(
εi−1

)
AT

)
dA

dA

dKi
+ 2KiCov (vi) (E.60)

= 2ACov
(
εi−1

) dA
dKi

+ 2KiCov (vi) (E.61)

= 2 (I −KiH i) Cov
(
εi−1

) d (I −KiH i)
dKi

+ 2KiCov (vi) (E.62)

The derivative of A is rewritten

d (I −KiH i)
dKi

= −d (KiH i)
dKi

= −d (KiH i)T

dKT
i

= −
d
(
HT

i K
T
i

)
dKT

i

= −HT
i (E.63)

Such that the derivative of Tr
(
Cov (εi)

)
becomes

dA

dKi
= dTr

(
Cov (εi)

)
dKi

= −2 (I −KiH i) Cov
(
εi−1

)
HT

i + 2KiCov (vi) (E.64)

The optimal value of Ki can now be found by equating (E.64) to zero:

0 = −2 (I −KiH i) Cov
(
εi−1

)
HT

i + 2KiCov (vi)
(E.65)

KiCov (vi) = (I −KiH i) Cov
(
εi−1

)
HT

i (E.66)
KiCov (vi) = Cov

(
εi−1

)
HT

i −KiH iCov
(
εi−1

)
Hkk, T (E.67)

KiCov (vi) +KiH iCov
(
εi−1

)
Hkk, T = Cov

(
εi−1

)
HT

i (E.68)

Ki

(
Cov (vi) +H iCov

(
εi−1

)
HT

i

)
= Cov

(
εi−1

)
HT

i (E.69)

Ki = Cov
(
εi−1

)
HT

i

(
Cov (vi) +H iCov

(
εi−1

)
HT

i

)−1

(E.70)

The value of Ki that minimizes the sum of the variances of the estimation errors at time k
given by (E.70) is often called the Kalman gain. Together (E.30), (E.53) and (E.70) constitute a
recursive affine least square error estimator.

115 / 172



Chapter E. Estimation Theory and Methods

There are multiple equivalent formulas for the Kalman gain, Ki, and the estimation error
covariance, Cov (εi) [30]. These are summarized from (E.71) to (E.75).

Ki = Cov
(
εi−1

)
HT

i

(
Cov (vi) +H iCov

(
εi−1

)
HT

i

)−1
(E.71)

= Cov (εi)HT
i Cov (vi)−1 (E.72)

Cov (εi) = (I −KiH i) Cov
(
εi−1

)
(I −KiH i)T +KiCov (vi)KT

i (E.73)
= (I −KiH i) Cov

(
εi−1

)
(E.74)

=
(
Cov

(
εi−1

)−1 +HT
i Cov (vi)−1H i

)−1
(E.75)

Even though (E.74) is simple and thus probably appealing to use, great care should be taken,
since numerical computing can cause this expression for Cov (εi) to become non-positive definite.
Instead (E.75) can be used which assures positive definiteness.

E.4.1 Summary
If an initial estimate of the vector to estimate χ̂0 = E [χ], the covariance of that estimate error,
Cov (ε0) = E

[(
χ− χ̂0

) (
χ− χ̂0

)T ] = Cov (χ), and a system with a measurement model on the
form

zi = H iχ+ yi + vi (E.76)
where the noise variable, vi, is distributed according to

vi ∼
(
0,Cov (vi)

)
(E.77)

are given, then an optimal linear estimate of the state vector, which minimizes the sum of
the state estimate error variance, can be calculated recursively from a series of independent
measurements, zi for i = 1, ..., I, by the formulas given in (E.78) to (E.81).

ẑi = H iχ̂i−1 + yi (E.78)

Ki = Cov
(
εi−1

)
HT

i

(
Cov (vi) +H iCov

(
εi−1

)
HT

i

)−1
(E.79)

χ̂i = χ̂i−1 +Ki (zi − ẑi) (E.80)
Cov (εi) = (I −KiH i) Cov

(
εi−1

)
(E.81)

E.5 Discrete Extended Kalman Filter
The Extended Kalman Filter (EKF) is a filter that recursively estimates Gaussian representation
of the state vector of a system based on measurements and a model of the system.

time

χ̄k|k-1 χ̄k|k

k

χ̄k-1|k-2 χ̄k-1|k-1

k-1

Prediction

Cov
(
χ̄k-1|k-2

)
Cov

(
χ̄k-1|k-1

)
Cov

(
χ̄k|k-1

)
Cov

(
χ̄k|k

)
Update Update

Figure E.2: Figure illustrating the steps in the Kalman filter estimation.
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Figure E.2 shows how a recursive estimation is performed. Given an a posteriori estimate of the
mean, χ̄k−1|k−1, and of the covariance matrix, Cov

(
χk−1|k−1

)
, of the state vector at time k − 1,

a prediction step is performed based on the system model. This results in an a priori estimate of
the mean, χ̄k|k−1, and of the covariance matrix, Cov

(
χk|k−1

)
, of the state vector at time k.

After this prediction step, an update step is performed taking the measurements of the state
vector into account to get an a posteriori estimate of the mean, χ̄k|k, and of the covariance
matrix, Cov

(
χk|k

)
, of the state vector at time k.

The Extended Kalman filter is, as its name implies, an extension to the linear Kalman filter. The
linear Kalman filter can be derived directly from the Recursive Bayesian estimator presented in
Section E.2 as an optimal estimator for a linear system with a linear measurement model including
additive, independent and Gaussian noise [30]. However deriving the linear Kalman filter from
results presented in Section E.3 and Section E.4 would in fact show that the linear Kalman
filter is the optimal linear filter, if the system and measurement noise is additive, zero-mean,
uncorrelated and white [30]. Thus the Extended Kalman filter, that works by linearising the
system and measurement model, is a natural extension to the linear Kalman filter.
Usually the equations for the Extended Kalman filter are presented for a system with additive
noise on both the system model and the measurement model, but to keep the description more
general, this section considers a system model and a measurement model on the form given in
(E.82) and (E.83) respectively [30].

χk = f
(
χk−1,uk−1,wk−1

)
(E.82)

zk = h
(
χk,vk

)
(E.83)

Where:
f (•) is the system model
h (•) is the measurement model
χ is the state vector
u is a known input to the system
w is a noise variable called the process noise
v is a noise variable called the measurement noise

wk and vk are assumed to be uncorrelated zero-mean white noise variables with known covariance,
Cov

(
wk
)
and Cov

(
vk
)
, meaning that they can be distributed according to any distribution

that satisfies the following properties

wk ∼
(

0,Cov
(
wk
))

(E.84)

vk ∼
(

0,Cov
(
vk
))

(E.85)

E
[
wk

(
wj
)T ]

= Cov
(
wk
)
δ (k − j) (E.86)

E
[
vk
(
vj
)T ]

= Cov
(
vk
)
δ (k − j) (E.87)

E
[
vk
(
wj
)T ]

= 0 (E.88)
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Where:
δ (•) is the the Kronecker delta function; that is δ (k − j) = 1 for

k = j and δ (k − j) = 0 for k 6= j

Performing a Taylor series expansion on f (•) around χk−1 = χ̄k−1|k−1 and wk−1 = 0, (E.93) is
obtained.

χk = f
(
χk−1,uk−1,wk−1

)
(E.89)

≈ f
(
χ̄k−1|k−1,uk−1, 0

)
+ ∂f

∂χ

∣∣∣∣∣
χ̄k−1|k−1,uk−1

(
χk−1 − χ̄k−1|k−1

)
+ ∂f

∂w

∣∣∣∣∣
χ̄k−1|k−1,uk−1

(
wk−1 − 0

)
(E.90)

= f
(
χ̄k−1|k−1,uk−1, 0

)
+ F k

(
χk−1 − χ̄k−1|k−1

)
+Lkwk−1 (E.91)

= F kχk−1 +
(
f
(
χ̄k−1|k−1,uk−1, 0

)
− F kχ̄k−1|k−1

)
+Lkwk−1 (E.92)

= F kχk−1 + ũk−1 + w̃k−1 (E.93)

All the variables in

ũk−1 = f
(
χ̄k−1|k−1,uk−1, 0

)
− F kχ̄k−1|k−1 (E.94)

are known, and thus can be calculated directly. Furthermore, the expectation and covariance of
w̃k are given by (E.95) and (E.96).

E
[
w̃k
]

= E
[
Lkwk−1

]
= LkE

[
wk−1

]
= 0 (E.95)

Cov
(
w̃k−1

)
= E

[
w̃k−1w̃k−1,T

]
= E

[
Lkwk−1

(
Lkwk−1

)T ]
= E

[
Lkwk−1wk−1,TLk,T

]
= LkCov

(
wk−1

)
Lk,T

(E.96)

And thus

w̃k−1 ∼
(

0, LkCov
(
wk−1

)
Lk,T

)
(E.97)

The system described in (E.93) is linear which allows a prediction step to be performed by using
the equations in Section E.3 with the a posteriori estimate of the mean, χ̄k−1|k−1, and covariance
matrix, C

(
χk−1|k−1

)
, of the state vector at time k − 1. The equations of the prediction step

become

χ̄k|k−1 = F kχ̄k−1|k−1 + ũk−1 (E.98)

= F kχ̄k−1|k−1 + f
(
χ̂k−1|k−1,uk−1, 0

)
− F kχ̄k−1|k−1 (E.99)

= f
(
χ̄k−1|k−1,uk−1, 0

)
(E.100)

Cov
(
χk|k−1

)
= F kCov

(
χk−1|k−1

)
F k,T + Cov

(
w̃k−1

)
(E.101)

= F kCov
(
χk−1|k−1

)
F k,T +LkCov

(
wk−1

)
Lk,T (E.102)

To obtain the equations for the update step, a Taylor series expansion is performed on h (•)
around χk = χ̄k|k−1 and vk = 0 as shown in (E.103) through (E.107).
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zk = h
(
χk,vk

)
(E.103)

≈ h
(
χ̄k|k−1, 0

)
+ ∂h

∂χ

∣∣∣∣∣
χ̄k|k−1

(
χk − χ̄k|k−1

)
+ ∂h

∂v

∣∣∣∣∣
χ̄k|k−1

(
vk − 0

)
(E.104)

= h
(
χ̄k|k−1, 0

)
+Hk

(
χk − χ̄k|k−1

)
+Mkvk (E.105)

= Hkχk +
(
h
(
χ̄k|k−1, 0

)
−Hkχ̄k|k−1

)
+Mkvk (E.106)

= Hkχk + yk + ṽk (E.107)

All the variables in

yk = h
(
χ̄k|k−1, 0

)
−Hkχ̄k|k−1 (E.108)

are known and can thus be calculated directly. Furthermore, as done for w̃k in (E.95) and (E.96),
it can be shown that

ṽk ∼
(

0,MkCov
(
vk
)
Mk,T

)
(E.109)

Section E.4 describes an optimal linear recursive least square estimator that minimizes the sum
of variances of the estimation error. Since (E.107) is a linear approximation of the measurement
model, the estimator described in Section E.4 can be used to incorporate measurements of the
states into the update step of the Extended Kalman filter. Doing so, the measurement estimate
becomes

ẑk = Hkχ̄k|k−1 + yk (E.110)

= Hkχ̄k|k−1 + h
(
χ̄k|k−1, 0

)
−Hkχ̄k|k−1 (E.111)

= h
(
χ̄k|k−1, 0

)
(E.112)

From Section E.4.1 it is known that the Kalman gain can be calculated by:

Kk = Cov
(
εk−1

)
Hk,T

(
Cov

(
ṽk
)

+HkCov
(
εk−1

)
Hk,T

)−1
(E.113)

Well knowing that the covariance of the state estimate error, Cov (ε0), is the same as the
covariance of the state estimate, Cov (χ), the covariance of the a priori is used when calculating
the Kalman gain

Kk = Cov
(
χk|k−1

)
Hk,T

(
MkCov

(
vk
)
Mk,T +HkCov

(
χk|k−1

)
Hk,T

)−1
(E.114)

and the update equations hereby become

χ̄k|k = χ̄k|k−1 +Kk
(
zk − ẑk

)
(E.115)

= χ̄k|k−1 +Kk
(
zk − h

(
χ̄k|k−1, 0

))
(E.116)

Cov
(
χk|k

)
=
(
I −KkHkk

)
Cov (ε0) (E.117)

=
(
I −KkHkk

)
Cov

(
χk|k−1

)
(E.118)
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E.5.1 Summary
For a given system, assume a system model and measurement model on the form given in (E.119)
and (E.120) respectively.

χk = f
(
χk−1,uk−1,wk−1

)
(E.119)

zk = h
(
χk,vk

)
(E.120)

Furthermore assume that

wk ∼
(

0,Cov
(
wk
))

(E.121)

vk ∼
(

0,Cov
(
vk
))

(E.122)

E
[
wk

(
wj
)T ]

= Cov
(
wk
)
δ (k − j) (E.123)

E
[
vk
(
vj
)T ]

= Cov
(
vk
)
δ (k − j) (E.124)

E
[
vk
(
wj
)T ]

= 0 (E.125)

Given these assumptions the state vector of the system at time k, χk, can be estimated recursively
with an Extended Kalman Filter with the formulas given in (E.126) to (E.134).

Prediction Step:

χ̄k|k−1 = f
(
χ̄k−1|k−1,uk−1, 0

)
(E.126)

Cov
(
χk|k−1

)
= F kCov

(
χk−1|k−1

)
F k,T +LkCov

(
wk−1

)
Lk,T (E.127)

where

F k = ∂f

∂χ

∣∣∣∣∣
χ̄k−1|k−1,uk−1

(E.128)

Lk = ∂f

∂w

∣∣∣∣∣
χ̄k−1|k−1,uk−1

(E.129)

Update Step:

Kk = Cov
(
χk|k−1

)
Hk,T

(
MkCov

(
vk
)
Mk,T +HkCov

(
χk|k−1

)
Hk,T

)−1
(E.130)

χ̄k|k = χ̄k|k−1 +Kk
(
zk − h

(
χ̄k|k−1, 0

))
(E.131)

Cov
(
χk|k

)
=
(
I −KkHkk

)
Cov

(
χk|k−1

)
(E.132)

where

Hk = ∂h

∂χ

∣∣∣∣∣
χ̄k|k−1

(E.133)

Mk = ∂h

∂v

∣∣∣∣∣
χ̄k|k−1

(E.134)
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E.6 Sequential Extended Kalman Filter
In the normal EKF, if multiple measurements are available at a single time step, zk1, ...,zkr , they
have to be incorporated by stacking them in one large measurement vector, zk =

[
zk1, ...,z

k
r

]T
.

If there are r measurements at time k, then the calculation of the kalman gain Kk, given by
(E.130), requires the inversion of an r × r matrix. If many measurements are available this
will degrade the performance of the EKF due to computational limitations. However, if the
measurements are independent, that is

Cov
(
zk
)

= diag
(
Cov (z1) , ...,Cov (zr)

)
(E.135)

then every measurement model for the available measurements will be on the form

zki = hi
(
χk,vki

)
(E.136)

Where:
hi is the measurement model related to the i’th measurement
vi is the noise variable related to the i’th measurement

which can be linearised as in (E.107), yielding

zki ≈Hk
iχ

k + yki + ṽki (E.137)
where

yki = hi
(
χ̄k|k−1, 0

)
−Hk

i χ̄
k|k−1 (E.138)

ṽki ∼
(

0,Mk
i Cov

(
vki

)
Mk,T

i

)
(E.139)

Hk
i = ∂hi

∂χ

∣∣∣∣∣
χ̄

k|k
i

(E.140)

Mk
i = ∂hi

∂vi

∣∣∣∣∣
χ̄

k|k
i

(E.141)

with

χ̄
k|k
0 = χ̄k|k−1 (E.142)

These measurement models fulfil the requirements for the optimal affine recursive least squares
estimator described in Section E.4. Thus, the measurements can be processed sequentially in the
update step of the Extended Kalman filter by using the optimal affine recursive least squares
estimator described in Section E.4.

E.6.1 Summary
For a given system, assume a system model and measurement model on the form given in (E.143)
and (E.144) respectively.

χk = f
(
χk−1,uk−1,wk−1

)
(E.143)

zki = hi
(
χk,vki

)
(E.144)
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Where zki , for i = 1, ..., r, are independent measurements. Furthermore assume that

wk ∼
(

0,Cov
(
wk
))

(E.145)

vki ∼
(

0,Cov
(
vvi

k
))

(E.146)

E
[
wk

(
wj
)T ]

= Cov
(
wk
)
δ (k − j) (E.147)

E
[
vki

(
vvj

k
)T ]

= Cov
(
vk
)
δ (k − j) for j = i (E.148)

E
[
vki

(
vvj

k
)T ]

= 0 for j 6= i (E.149)

E
[
vki

(
wj
)T ]

= 0 (E.150)

Given these assumptions, the state vector of the system at time k, χk, can be estimated recur-
sively with the Extended Kalman filter with the formulas given from (E.151) to (E.161).

Prediction Step:

χ̄k|k−1 = f
(
χ̄k−1|k−1,uk−1, 0

)
(E.151)

Cov
(
χk|k−1

)
= F kCov

(
χk−1|k−1

)
F k,T +LkCov

(
wk−1

)
Lk,T (E.152)

where

F k = ∂f

∂χ

∣∣∣∣∣
χ̄k−1|k−1,uk−1

(E.153)

Lk = ∂f

∂w

∣∣∣∣∣
χ̄k−1|k−1,uk−1

(E.154)

Update Step: Start by defining χ̄k|k0 = χ̄k|k−1 and Cov
(
χ
k|k
i

)
= Cov

(
χk|k−1

)
. Then, for

i = 1, ..., r

Kk
i = Cov

(
χ
k|k
i

)
Hk,T

i

(
Mk

i Cov
(
vki

)
Mk,T

i +Hk
i Cov

(
χ
k|k
i

)
Hk,T

i

)−1

(E.155)

χ̄
k|k
i = χ̄i

k|k +Kk
i

(
zki − hi

(
χ̄i

k|k, 0
))

(E.156)

Cov
(
χ
k|k
i

)
=
(
I −Kk

iH
k
i

)
Cov

(
χ
k|k
i

)
(E.157)

where

Hk
i = ∂hi

∂χ

∣∣∣∣∣
χ̄i

k|k
(E.158)

Mk
i = ∂hi

∂vi

∣∣∣∣∣
χ̄i

k|k
(E.159)
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Finally, the a posteriori at time k, being the estimates of the mean and covariance, are given
from

χ̄k|k = χ̄k|kr (E.160)

Cov
(
χk|k

)
= Cov

(
χk|kr

)
(E.161)

E.7 Importance Sampling

g(x)

p(x)

x

Figure E.3: Illustration of importance Sampling. Here p (x) is approximated by drawing
samples from g (x) shown with blue arrows. And then weighted to approximate p (x) shown with
red arrows.

Importance Sampling is a general technique make a discrete approximation of a distribution,
p(x), called the target distribution, based on samples generated from another distribution, g(x),
called the proposal distribution. The expectation of any function, f(x), of a continues random
variable, X, with a PDF, p (x), can be written as [28]

Ep
[
f (X)

]
=
∫ ∞
−∞

f (x) p (x) dx (E.162)

Where:
p (x) is the PDF of the random variable X.

The subscript on the expectation, eg. Ep, is used to emphasize which PDF the random variable
of which the expectation is being found, is distributed according to. Define the indicator function,
IA (x), on the set A as

IA (x) =
{

1 x ∈ A
0 otherwise (E.163)
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It now follows that

Ep
[
IA (X)

]
=
∫ ∞
−∞

IA (x) p (x) dx (E.164)

=
∫
A

1 · p (x) dx (E.165)

=
∫
A
p (x) dx (E.166)

= P (A) (E.167)

The expectation of the indicator function, IA (x), of a random variable, X, on the set A is equal
to the probability of the set, also called the event, A. With these definitions it can now be
shown how to approximate the target distribution, p(x), by drawing samples from the proposal
distribution, g(x). Start by assuming that

p (x) > 0 ⇒ g (x) > 0 (E.168)

Meaning that the proposal distribution should not be zero in a region of the state space, where
the target distribution is non-zero.
Now for any set A the following is true

Ep
[
IA (X)

]
=
∫ ∞
−∞

IA (x) p (x) dx (E.169)

=
∫ ∞
−∞

g (x)
g (x)IA (x) p (x) dx (E.170)

=
∫ ∞
−∞

p (x)
g (x)IA (x) g (x) dx (E.171)

=
∫ ∞
−∞

q (x) IA (x) g (x) dx (E.172)

= Eg
[
q (X) IA (X)

]
(E.173)

Where:
q (x) is called the importance weight function.

From this it follows that

P (A) =
∫
A
p (x) dx =

∫
A
q (x) g (x) dx = Eg

[
q (X) IA (X)

]
(E.174)

Now assume that N samples drawn IID according to the PDF g (x) are available, i.e. x1, ..., xN ∼
g. Then an estimate of Eg

[
q (X) IA (X)

]
can be calculated with the sample mean, and thus

∫
A
p (x) dx = Eg

[
q (X) IA (X)

]
≈ 1
N

N∑
i=1

q (xi) IA (xi) (E.175)

From the law of large numbers it furthermore follows that the sample mean converges to the
true mean [28]. Thus,

lim
N→∞

1
N

N∑
i=1

q (xi) IA (xi) = Eg
[
q (X) IA (X)

]
=
∫
A
p (x) dx = P (A) (E.176)

Notice that in these derivations no assumptions are made about the set A and thus, the above
holds for any set A. Therefore these derivations show that given N samples, x1, ..., xN , drawn
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IID according to an arbitrary proposal distribution, g (x), fulfilling (E.168), it is possible to
approximate the target distribution, p (x), by weighting the samples, x1, ..., xN , based on the
importance weight function

q (xi) = p (xi)
g (xi)

(E.177)

This requires that q (xi) can be evaluated for all possible xi.

E.7.1 Self-normalized Importance Sampling
Sometimes it is only possible to compute an unnormalized version of q (x). That is

q (x) = η · q̃ (x) = η1 · p̃ (x)
η2 · g̃ (x) (E.178)

Where:
q̃ is the unnormalized version of q (x)
p̃ is the unnormalized version of p (x)
g̃ is the unnormalized version of g (x)
ηi is an unknown normalizing constants where ηi > 0.

In words this means that q, p and g are known up to some unknown constants, η, η1 and η2.
Now notice that since q (x) and g (x) are PDF’s, the following is true∫ ∞

−∞
q (x) g (x) dx = 1 (E.179)

Still assuming the condition in (E.168) it is therefore possible to rewrite (E.173) to

Eg
[
q (X) IA (X)

]
=
∫ ∞
−∞

q (x) IA (x) g (x) dx (E.180)

=
∫∞
−∞ q (x) IA (x) g (x) dx∫∞
−∞ q (x) g (x) dx (E.181)

=
∫∞
−∞ η · q̃ (x) IA (x) g (x) dx∫∞
−∞ η · q̃ (x) g (x) dx (E.182)

=
η ·
∫∞
−∞ q̃ (x) IA (x) g (x) dx
η ·
∫∞
−∞ q̃ (x) g (x) dx (E.183)

=
∫∞
−∞ q̃ (x) IA (x) g (x) dx∫∞
−∞ q̃ (x) g (x) dx (E.184)

= Eg
[
q̃ (X) IA (X)

]
Eg
[
q̃ (X)

] (E.185)

Therefore it must be concluded that

P (A) =
∫
A
p (x) dx = Eg

[
q (X) IA (X)

]
= Eg

[
q̃ (X) IA (X)

]
Eg
[
q̃ (X)

] (E.186)

Assume again that N samples drawn IID according to the PDF g (x), i.e. x1, ..., xN ∼ g, are
available. Then an estimate of Eg

[
q (X) IA (X)

]
can be calculated with the sample mean, and

thus
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∫
A
p (x) dx = Eg

[
q̃ (X) IA (X)

]
Eg
[
q̃ (X)

] ≈
1
N

∑N
i=1 q̃ (xi) IA (xi)

1
N

∑N
i=1 q̃ (xi)

(E.187)

Again from the law of large numbers it follows

lim
N→∞

1
N

∑N
i=1 q̃ (xi) IA (xi)

1
N

∑N
i=1 q̃ (xi)

=
limN→∞

1
N

∑N
i=1 q (xi) IA (xi)

limN→∞
1
N

∑N
i=1 q (xi)

= Eg
[
q̃ (X) IA (X)

]
Eg
[
q̃ (X)

] =
∫
A
p (x) dx

(E.188)
Which proves that the estimate given by (E.187) converges to the true p (x) for any given set A
whenever a sufficient number of samples are used. Therefore these derivations show that given
N samples, x1, ..., xN , drawn IID according to an arbitrary proposal distribution, g (x), fulfilling
(E.168), it is possible to approximate the target distribution, p (x), by weighting the samples,
x1, ..., xN , based on the importance weight function

q̃ (xi)∑N
i=1 q̃ (xi)

(E.189)

126 / 172



E.8. Particle Filter

E.8 Particle Filter
As mentioned in Section E.2 the Bayesian Estimator has the property that it keeps track of the
full PDF of the state vector, but unfortunately analytical solutions are only available for special
cases. As a solution to this problem the particle filter was invented as a numerical implementation
of the Bayesian Estimator using a Monte Carlo methodology [30].

x

p(χk−1 | z1:k−1)

p(χk | z1:k)

(a) A set of a posteriori particles for time k-1 distributed according to
p(χk−1 | z1:k−1).

x

p(χk | z1:k−1)

p(χk | z1:k)

(b) The posteriori particles for time k-1 propagated through the motion model,
to obtain a priori particles at time k distributed according to p(χk | z1:k−1).

x

p(χk | z1:k)
q(χ

k|k-1
[i]

)

(c) A priori particles weighted according to the importance weight q
(
χk|k−1

)
.

x

p(χk | z1:k)

(d) Resampling of the a priori particles to obtain a posteriori particles for time k,
distributed according to p(χk | z1:k).

Figure E.4: Illustration of the steps within a particle filter.

The basic idea behind the particle filter is to draw a number of samples, called particles, from a
known a priori distribution p(χk |z1:k−1). Using importance sampling, as described in Section E.7,
the generated particles are weighted, such that they approximate the a posteriori distribution
p(χk | z1:k).
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A re-sampling is then performed on the weighted particles to generate a new particle set distributed
according to the a posteriori distribution p(χk | z1:k).
In this section a system model and measurement model given on the form in (E.190) and (E.191),
respectively, are assumed [30].

χk = fk−1
(
χk−1,wk−1

)
(E.190)

zk = hk
(
χk,vk

)
(E.191)

Where:
χ is the state vector
z is a measurement
fk (•) is the time-varying system model
hk (•) is the time-varying measurement model
w is the process noise
v is the measurement noise

Furthermore it is assumed that the process noise, w, and measurement noise, v, are independent,
white and have known PDF’s. Moreover, assume that the PDF p(χ0) is known.

To obtain the a priori particles, χk|k−1
[i] ∼ p(χk | z1:k−1) the old a posteriori particles, χk−1|k−1

[i] ,
are propagated using the motion model with random generated noise. That is

χ
k|k−1
[i] = fk−1

(
χ
k−1|k−1
[i] ,wk−1

[i]

)
(E.192)

where wk−1
[i] are drawn as samples from the known PDF of wk−1.

In the framework of importance sampling, the a priori distribution p(χk | z1:k−1) should be seen
as the proposal distribution, and the a posteriori distribution p(χk | z1:k) should be seen as the
target distribution. Thus based on (E.177) the importance weight function for a priori particles,
χk|k−1, become

q
(
χk
)

= p(χk | z1:k)
p(χk | z1:k−1) (E.193)

= p(χk | zk, z1:k−1)
p(χk | z1:k−1) (E.194)

= η · p(z
k | χk, z1:k−1)p(χk | z1:k−1)

p(χk | z1:k−1) (E.195)

= η · p(zk | χk, z1:k−1) (E.196)
= η · p(zk | χk) (E.197)
∝ p(zk | χk) (E.198)

= q̃
(
χk
)

(E.199)

(E.197) comes from the Markovian assumptions given in (E.190) and (E.191). Since the normalizer,
η, coming from Bayes’ rule, is not known, the self-normalized importance sampling, described in
Section E.7.1, has to be used. Since the denominator of the fraction in (E.189) is not known
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before all q̃ (xi) have been calculated, the process of calculating the weights is divided into two
steps. First q̃ (xi) is calculated for all particles, and then they are normalized based on

q̃ (xi)∑N
i=1 q̃ (xi)

(E.200)

By doing so, the weighted particles become an approximation of the a posteriori distribution,
p(χk | z1:k). Resampling is then performed to generate a new random set of particles that
are distributed according to this proposal distribution. Different algorithms to perform this
resampling step have been developed [30], and the specific algorithm to use is usually decided
based on a trade-off between computational efficiency and implementation complexity. After the
resampling, any statistical measure of the a posteriori distribution, p(χk | z1:k), can be calculated
based on the newly generated particles. However, as the number of particles, N , defines the
quantization of the a posteriori distribution, choosing the right number of particles is a trade-off
between efficiency and estimation accuracy, since the accuracy of the estimates depend on the
number of particles.

E.8.1 Calculating the importance weight
To calculate the importance weight of a priori particles, (E.201) has to be evaluated.

q̃
(
χk
)

= p(zk | χk) (E.201)

p(zk |χk) can be calculated by substituting a measurement, zk,∗ into the non-linear measurement
model, using the current state of the particle, χk|k−1

[i] , and then solve for the measurement noise
variable, vk. Let vk,∗ denote the solution. With the solution the PDF, p

(
vk
)
, assumed to be

known, is evaluated at the current noise, vk,∗. That is

zk,∗ = hk
(
χ
k|k−1
[i] ,vk

)
⇒ vk,∗ = hk

−1
(
χ
k|k−1
[i] , zk,∗

)
(E.202)

qi = p
(
vk = vk,∗

)
(E.203)

E.8.2 Particle filter algorithm summary
The particle filter algorithm can be summarized as follows

1. Initialize the filter by drawing N random state vectors based on the knowledge of p(χ0).
That is

χ
0|0
[i] ∼ p(χ

0) for i = 1, ..., N (E.204)
Each of these random generated state vectors are called particles. This is illustrated in
Figure E.4(a).

2. For k = 1,2,... perform the following steps

(a) Propagate the particles to obtain a priori particles, χk|k−1
[i] , by using the system

model:
χ
k|k−1
[i] = fk−1

(
χ
k−1|k−1
[i] ,wk−1

[i]

)
(E.205)

Where wk−1
[i] is random samples drawn from the known PDF of wk−1. Thereby the

particles will be distributed according to the proposal distribution p(χk | z1:k−1).
This is illustrated in Figure E.4(b).
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(b) To approximate the target distribution p(χk | z1:k), based on the a priori parti-
cles, perform self-normalized importance sampling For each i = 1, ..., N calculate
the unnormalized importance weight, q̃[i]

(
χ
k|k−1
[i]

)
Now normalize the weights, q̃[i]

according to
q[i] =

q̃[i]∑N
j=1 q̃[j]

(E.206)

This is illustrated in Figure E.4(c).

(c) Draw a new set of a posteriori particles, χk|k[i] , relative to the calculated normalized
weights q[i].

3. The a posteriori particles, χk|k[i] , are distributed according to p(χk | z1:k), as illustrated in
Figure E.4(d). Thus any desired statistical measure of p(χk | z1:k) can be computed based
on the a posteriori particles.

It should be noted, that different approaches to improve the particle filter exists and thus some
of the steps mentioned above can vary. One approach is described in Section E.8.4 while others
can be found in [30].

E.8.3 Sample impoverishment

p
(
xk|zk

)

x
k-1|k-1
[i]

p
(
xk|zk

)

x
k|k-1
[i]

⇓ Applying motion model on particles

⇓ Importance sampling

Figure E.5: Illustration of sample impoverishment due to bad motion model and a low number
of particles.
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As stated in Section E.7, the requirement given by (E.168) has to be fulfilled for the importance
sampling to work. For the particle filter described in this section, this means that

p(χk | z1:k) > 0 ⇒ p(χk | z1:k−1) > 0 (E.207)

Since the a priori particles, χk|k−1
[i] , are only discrete representations of the proposal distribution,

p(χk | z1:k−1), (E.207) may not be fulfilled even though the continuous proposal distribution
fulfils the requirement.
As illustrated in Figure E.5, this is likely to happen if a bad motion model is used to obtain
the a priori particles, χk|k−1

[i] ∼ p(χk | z1:k−1). In that case only a few or a single particle will
be given a significant importance weight, resulting in only a few or even just a single a priori
particle being selected for the a posteriori particles in the resampling step. This is known as
sample impoverishment.

If the continuous proposal and target distribution fulfil (E.207), then this can partly be solved
by increasing the number of particles. But this quickly lowers the computational efficiency of
the filter and often only delays the sample impoverishment [30]. However different solutions to
prevent sample impoverishment is suggested in [30]. One of these solutions is described in details
in Section E.8.4.

E.8.4 Particle Filter combined with other filters
A suggested improvement of the particle filter to avoid sample impoverishment, see Section E.8.3,
is to combine it with other filters [30]. One approach is to refine the a priori particles, χk|k−1

[i] ,
before calculating importance weights and performing the resampling. By refining the distribution
with another filter taking measurements into account, the a priori particles will thus turn into
a posteriori particles, χk|k[i] , on which the importance weights are calculated. Therefore the
likelihood that these particles will overlap with the target distribution is higher, yielding a better
estimate of the target distribution.

As an example shown below the algorithm for a particle filter can be combined with the sequential
Extended Kalman Filter described in Section E.6.

1. Initialize all particles in the filter by drawing N random state vectors based on the
knowledge of p(χ0). That is

χ
0|0
[i] ∼ p(χ

0) for i = 1, ..., N (E.208)

Furthermore, assign each of these particles a covariance Cov
(
χ

0|0
[i]

)
= Cov

(
χ0|0

)
.

2. For k = 1,2,... perform the following steps

(a) Propagate the particles to obtain a priori particles, χk|k−1
[i] , by using the system

model as described for the sequential Extended Kalman filter in (E.151) to (E.152).
However, the noise in the motion model should not be put to zero. Then, (E.151)
becomes

χ
k|k−1
[i] = fk−1

(
χ
k−1|k−1
[i] ,wk−1

[i]

)
(E.209)

Where wk−1
[i] is random samples drawn from the known PDF of wk−1. Thereby the

particles will be distributed according to the proposal distribution p(χk | z1:k−1).
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(b) Perform the update step of the sequential Extended Kalman filter on each of the
a priori particles, χk|k−1

[i] , to obtain a posteriori particles, χ̃k|k[i] . The update step is
performed seperately for each particle according to (E.161) to (E.155).

(c) Since the sequential Extended Kalman filter makes use of a linear approximation of
the system model and measurement model, the obtained a posteriori particles, χ̃k|k[i] ,
will not be distributed exactly according to the target distribution p(χk | z1:k). To
approximate the correct target distribution based on the a posteriori particles, χ̃k|k[i] ,
the self-normalized importance sampling is used. For each i = 1, ..., N calculate the
unnormalized importance weight, q̃[i]

(
χ̃
k|k
[i]

)
(d) Now normalize the weights, q̃[i] according to

q[i] =
q̃[i]∑N
j=1 q̃[j]

(E.210)

(e) Draw a new set of a posteriori particles, χk|k[i] , relative to the calculated normalized
weights q[i].

3. The obtained a posteriori particles, χk|k[i] , are distributed according to p(χk | z1:k). Thus
any desired statistical measure of p(χk | z1:k) can be computed based on the a posteriori
particles, χk|k[i] .

E.9 FastSLAM 2 details

This appendices describes some further details and the equations of the FastSLAM 2.0 algorithm
left out of the summery of the algorithm in Section 7.1.

E.9.1 Drawing Samples from the Proposal Distribution

In the following subscript [p] denotes particle index, and p = 1, ..., N , where N is the number of
particles in the particle filter.
FastSLAM 2.0 draws proposal particles, s̃1:k

[p] , from an approximation of the proposal distribution
given in (7.10). These proposal particles is obtained as follows. For each particle at time k-1,
s1:k−1
[p] , a mean, s̄k[p] and covariance, Cov

(
sk[p]

)
, of a Gaussian distribution is estimated with the

sequential Extended Kalman Filter described in Section E.6.1.

For the update step of the sequential Extended Kalman Filter only measurements, zkex, of
landmarks already initialized in the filter at time k, are used. For the sake of completeness all
equations for this sequential Extended Kalman Filter, proposed by the authors of FastSLAM in
[13], is shown from (E.211) to (E.214). These equations are calculated recursively for i = 1, ..., I
where I is the number of landmark measurements of already initialized landmarks.

132 / 172



E.9. FastSLAM 2 details

Cov
(
sk0,[p]

)
= Cov

(
wk
)

(E.211)

s̄k0,[p] = f

(
sk−1
[p] ,u

k

)
(E.212)

Cov
(
sk
)
i,[p] =

HT
s,i

(
Zk
i

)−1
Hs,i +

(
Cov

(
sk
i−1,[p]

))−1
−1

(E.213)

s̄k
i,[p] = s̄k

i−1,[p] + Cov
(
sk
i,[p]

)
HT

s,i

(
Zk
i

)−1 (
zkex − ẑkex,i

)
(E.214)

where

H l,i =
∂hM

(
sk, li

)
∂li

∣∣∣∣∣∣∣
sk=sk,l=lk−1

[p],i

Hs,i =
∂hM

(
sk, li

)
∂sk

∣∣∣∣∣∣∣
sk=sk,l=lk−1

[p],i

Zk
i = Cov

(
vk
)

+H l,iCov
(
lk−1
[p],i

)
HT

l,i

ẑkex,i = h

(
sk, lk−1

[p],i

)

and li is used to denote the landmark that matches the i’th measurement, zex,i, of landmarks
already initialized in the filter.

After having estimated the a posteriori distribution one random sample is drawn, s̃k[p], from the

normal distribution with mean, s̄k|k[p] , and covariance, C
(
s
k|k
[p]

)
. That is

s̃k[p] ∼ N
(
s̄k
I,[p], C

(
sk
I,[p]

))
(E.215)

This sample, s̃k[p], is then added to the particle, s1:k−1
[p] , to obtain proposal particles, s̃1:k

[p] .

E.9.2 Calculate Importance Weights
As stated in Section E.8, the importance weights of the particles in a particle filter should be
calculated as

qk[p] = target distribution
proposal distribution (E.216)

The proposal particles, s̃1:k
[p] will not be distributed exactly according to (7.10). Nevertheless, the

importance weight function used by FastSLAM 2.0 is derived as in (E.216) assuming that the
proposal particles, s̃1:k

[p] , are actually distributed according to (7.10).
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In [14] it is shown that there exist no closed form of qk[p], for the proposal and target distributions
used within FastSLAM, from which the importance weight can easily be determined. Therefore
FastSLAM 2.0 approximates the importance weight as being a product of Gaussian distributions,
with means given by (E.217) and covariances given by (E.218) [13]. Each of these Gaussian
distributions represents the probability of each measurement of landmarks already initialized in
the filter.

ˆzkex,i = h

(
s̃k[p], l̄

k−1
i,[p]

)
(E.217)

Cov
(
qk
i,[p]

)
= Hs,iCov

(
wk
)
HT

s,i +H l,iCov
(
lk−1
i,[p]

)
HT

l,i + Cov
(
vk
)

(E.218)

where

Hs,i =
∂h
(
sk, li

)
∂sk

∣∣∣∣∣∣∣
sk=s̃k

[p],li=l̄
k−1
i,[p]

(E.219)

H l,i =
∂h
(
sk, li

)
∂li

∣∣∣∣∣∣∣
sk=s̃k

[p],li=l̄
k−1
i,[p]

(E.220)

The probability of a given measurement within a particle is calculated by evaluating PDF using
the measurement and the properties of the distribution defined by ˆzkex,i and Cov

(
qk
i,[p]

)
.

q̃k
i,[p] ≈

∣∣∣∣∣2πC
(
qk
i,[p]

)∣∣∣∣∣
− 1

2

e
− 1

2

(
zk

ex,i−
ˆzk

ex,i

)T

Cov
(
qk

i,[p]

)−1(
zk

ex,i−
ˆzk

ex,i

)
(E.221)

The unnormalized importance weight of each particle is calculated as the product of probability
of each measurement.

E.9.3 Update Landmarks
After estimating the proposal distribution, the map maintained by each particle is updated
based on the recent measurements, zk. This update step of the map can be divided in two
stages. The first stage takes measurements of landmarks already initialized in the filter, zex,i,
and updates the landmarks based on these. The second stage add new landmarks to the map
by using measurements of landmarks not already initialized in the filter, zknew,i. Due to the
assumption of conditional independence, the estimate of landmarks which are already initialized
in the map, but of which no measurements are available, will stay unchanged.

As stated the estimate of landmarks is performed by an EKF for each of the landmarks. Since
the landmarks are assumed to be static, the prediction step of these EKF’s can be discarded,
meaning that the equations for the update step of the landmarks effectively become the equations
of the optimal affine recursive least squares estimator described in Section E.4. For completeness
sake the equations of these Kalman Filters estimating the landmark location of the i’th landmark,
li, is shown in (E.222) and (E.223) [13].
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l̄
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i,[p] = l̄
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(E.222)
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(E.225)

ˆzkex,i = h

(
s̃k[p], l̄

k−1
i,[p]

)
(E.226)

The initialization of a new landmark depends upon if the measurement model for the landmarks
(7.9) is invertible or not. If the measurement model is not invertible, then a single measurement
is not sufficient to initialize a landmark and special techniques have to be utilized. E.g. for
monocular SLAM algorithms using only one RGB camera, the relative depth of a landmark
cannot be estimated based on just one image and thus the landmark cannot be placed in an
absolute frame.
One way of dealing with this problem is to initialize new landmarks into an EKF with some
other parameters, of which one of them is the depth. Hence letting a Kalman Filter estimate
the depth before the landmark can be inserted into the map. When the depth estimate has
converged, it can be used to place the landmark in an absolute frame [20].

However if the measurement model is invertible then landmarks can be initialized directly and
the posterior distribution for the i’th landmark can be calculated as [13]

l̄
k
i,[p] = h−1

M

(
s̃k[p], z

k
new,i

)
(E.227)
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F Intel RealSense R200 camera

The RealSense R200 RGB-D USB 3.0 camera [48] provided as part of the Intel Aero drone is a
combined RGB and depth camera. This appendix describes the function, technical specifications
and how to use the R200 camera. The content within this appendix is based on a combination
of details, specifications and datasheets from Intel, a paper from Intel giving a comprehensive
overview of the camera [49]and own experience from using the R200 camera on the Intel Aero
drone.

Capturing depth of an environment can be done in several ways, where most commercial solutions
either contain a stereo camera pair, a structured light (projective) solution or Time-Of-Flight
technology. The RealSense R200 camera combines multiple solutions by being equipped with an
infrared (IR) projector and two infrared cameras capturing a stereo image of the environment. If
enough IR light is present in the environment, the two IR cameras would be enough to capture
the depth of the scene, but to make sure that surfaces with a plain texture can be captured as
well, an IR laser projector emits a grid of IR lines which can be captured by the cameras.

Figure F.1: R200 camera layout [50]

With two rectified stereo images, that is two images where the epipolar lines are horizontal and
only the horizontal translation is different, see Figure F.2(a), it is possible to calculate a disparity
map.
Similar triangles can then be used to easily calculate the depth from the disparity, (x− x′), by
using the intrinsics of the stereo cameras, as part of the pin-hole camera model, see Appendix G,
and the extrinsics, being just the baseline B for rectified images. This is shown in Figure F.2(b).
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(a) Rectified images [51] (b) Disparity to depth conversion using similar trian-
gles [51]

Figure F.2: Rectified stereo images used to calculate depth

Performing a scan-based matching between similar points present in both images allows the R200
camera to generate a depth image where each pixel value corresponds to the depth value to a
projected point. Hence, the depth values are projected back into a common frame, being the left
IR camera in the R200 case, resulting in a 2D depth image. Depth images are usually pictured
as greyscale images even though the images rather represent a 2D array of depth values usually
in millimetres.

A summary of the above mentioned functionality being a part of the R200 camera is shown in
the functional overview diagram provided by Intel, Figure F.3.

Figure F.3: Functional overview of R200 camera [52]
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The important benefit to notice from this functional overview of the R200 camera is how the
disparity processing is contained within an onboard ASIC that does the processing and depth
image generation at full frame-rate, see the tables in Section F.1.

F.1 Technical details
The RealSense R200 camera comes equipped with a lens giving the RGB camera a vertical field
of view of 43◦ ± 2◦ and a horizontal field of view of 70◦ ± 2◦ and the IR cameras a slightly
narrower field of view with 59◦ ± 2◦ of horizontal field of view but 46◦ ± 2◦ of vertical field of
view. According to the datasheet of the RealSense R200 camera [52], the individual cameras
of the R200 camera and the generated depth image have a defined set of possible resolutions
and frame-rates as shown in Table F.1. These specifications define an obvious limit for possible
resolution and maximum frame-rate for the FastSLAM implementation.

Camera Supported resolutions Supported frame-rates [FPS]
RGB 320× 240 15, 30, 60

640× 480 30, 60
1920× 1080 15, 30

IR 332× 252 30, 60, 90
492× 372 30, 60, 90
640× 480 30, 60, 90

Depth 320× 240 30, 60, 90
332× 252 30, 60, 90
480× 360 30, 60, 90
492× 372 30, 60, 90
628× 468 30, 60, 90

Table F.1: Supported resolutions and frame-rates [53]

Figure F.4: Example of non-rectified, raw and hence distorted RGB image at 640 × 480
resolution
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An example of a raw RGB image taken at a resolution 640× 480, that is an image not being
rectified and containing distortion as well, is shown in Figure F.4. The corresponding pair of
IR stereo images taken at a resolution of 492× 372 pixels is shown in Figure F.5(a), stacked on
top of each other to be able to see the difference (disparity). Finally, the resulting depth image
captured at a resolution of 480× 360 pixels is shown in Figure F.5(b).

(a) IR stereo images with left image at the
top and right image at the bottom

(b) Depth image at 480× 360 resolution

Figure F.5: Rectified stereo images used to calculate depth

The choices of IR resolution and resulting depth resolution are linked as the depth image is
generated based on the two IR images. For this matter it is also apparent how the generated
depth resolution is slightly smaller than the corresponding IR resolution. This is a result of the
depth image generation where an internal morphological operation is performed on the disparity
map to generate a smoothed and less noisy depth image. However, within the depth image one
should also expect the usable region to be smaller than the actual image resolution due to the
fact that the overlapping part of the stereo images is smaller than the image size itself. This is
also noticeable in the depth image in Figure F.5(b) where a black bar, indicating no depth, is
present in the left side of the image. This unusable area is known as the dead-zone between the
stereo images, see Figure F.6.
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Figure F.6: The yellow area marks the dead-zones between the stereo cameras [51]

Furthermore, the R200 camera has some other limitations for the depth range, limited by the
disparity processing and the visibility of the projected IR grid. In the datasheet for the R200
camera a limited depth range of 0.4 m to 2.8 m is specified, but within an article by Intel an
inside range of approximately 0.5 m to 3.5 m and an outside range up to 10 m is mentioned [50].
The depth range has been tested within the Motion Tracking lab at Aalborg University and has
been confirmed to work at least up to 3 m even with the Vicon cameras running at the same
time, emitting IR light.

A resolution of 320 × 240 pixels and a frame-rate of 30 FPS is chosen for both the RGB and
depth image to be used. As the speed and performance requirements have not been investigated
as part of this project, the increased frame-rate of 60 FPS has not been considered.

F.2 Factory calibrated camera parameters
The Intel RealSense R200 camera comes with a set of factory calibrated parameters including
camera intrinsics, extrinsics and distortion parameters. These parameters are all saved internally
inside the camera and can be extracted through the Intel RealSense SDK or librealsense library
(C++) communicating with the camera over USB. The specifications for the R200 camera taken
directly from the librealsense library [54]are shown below:

Left and right infrared images are rectified

• The two infrared streams have identical intrinsics

• The two infrared streams have no distortion

• There is no rotation between left and right infrared images (identity matrix)

• There is only a horizontal translation between left and right infrared images

• Therefore, the y component of pixel coordinates can be used interchangeably between
these two streams
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Depth images are pixel aligned with the first infrared stream except for an optional
6 pixel offset

• Native depth images are six pixels smaller on all four sides, but are otherwise pixel aligned
with infrared

• librealsense will pad the depth image or crop the infrared image if matching resolutions
are requested

• If matching resolutions are requested, depth and infrared images will use the exact same
intrinsics

• If not, pixel coordinates can be mapped by adding or subtracting six pixels from both
components

R200 color images use Modified Brown-Conrady Distortion, but can be rectified in
software

• Request frames from the rectified color stream to received images with no distortion

• There is no rotation between depth/infrared and rectified color (identity matrix)

• There can be translation in all three axes between depth/infrared and rectified color

• Therefore, the x and y component of pixel coordinates can be mapped independently
between depth/infrared and rectified color

F.2.1 Extrinsics
As seen by the R200 camera layout shown in Figure F.3 the RGB camera and stereo cameras
are obviously not located on top of each other, why a physical difference in the location of the
camera frames will be apparent described by the extrinsics of the images. These extrinsics can
be extracted from the calibrated camera parameters and are listed in Table F.2. However, there
is no rotation between the cameras why the rotation is included in the table, indicating that the
orientation is aligned or at least assumed to be aligned for all cameras [54].

Camera Extrinsic translation, [x y z]T

RGB

0
0
0

 m

Left IR

−0.0007056731
0.05833369

0.0003919501

 m

Depth
frame

−0.0007056731
0.05833369

0.0003919501

 m

Right IR

−0.0007056731
−0.01150674
0.0003919501

 m

Table F.2: Factory calibrated R200 camera extrinsics for the camera used
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The extrinsics are all given in a body frame relative to the RGB camera and aligned with the
body frame of the drone, where the x-axis points forward and y-axis to the left. Hence, the
optical frame of the cameras, where the z-axis is pointing in the direction of the viewpoint, is
different from the frame wherein the extrinsics are defined.

F.2.2 Intrinsics and distortion
As mentioned, all the cameras are equipped with a lens, why the images will be prone to distortion
near the edge of the images. Luckily the onboard ASIC also does some preprocessing to remove
the distortion from the IR images before rectification and depth image generation. Therefore,
the resulting depth image is non-distorted and aligned with the intrinsics of the left IR image.
For the RGB image however the image is distorted from which a set of calibrated distortion
parameters is included. These parameters model the distortion using the Modified Brown-
Conrady Distortion model [55] which includes five distortion parameters defined by the D matrix.
The distortion parameters include three radial distortion coefficients, k1:3, and two tangential
distortion coefficients, t1:2.

D =


k1
k2
t1
t2
k3

 (F.1)

The intrinsics of the individual cameras are all defined according to the pin-hole camera model as
described in Appendix G. The intrinsics are defined as the projection matrix, P , see also (G.6).

P =

ax 0 x0 0
0 ay y0 0
0 0 1 0

 (F.2)

Both the intrinsics and distortion parameters of the individual cameras depend on the configured
resolution. As an example, the intrinsics for the default resolution, where RGB is 640× 480 and
depth is 480 × 360, is shown in Table F.3 as well as the used resolution with both RGB and
depth being 320× 240.
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Camera Resolution Intrinsics matrix, P Distortion parameters, D

RGB 640× 480

617.8589 0 321.3710 0
0 623.4426 253.7631 0
0 0 1 0




−0.07299995
0.04706055
0.001392152
0.0004241989

0.0



Depth 480× 360

457.4863 0 241.1611 0
0 457.4863 179.5000 0
0 0 1 0




0.0
0.0
0.0
0.0
0.0



RGB 320× 240

308.9294 0 160.6855 0
0 311.7213 126.8816 0
0 0 1 0




−0.07299995
0.04706055
0.001392152
0.0004241989

0.0



Depth 320× 240

309.2598 0 160.1654 0
0 309.2598 119.4571 0
0 0 1 0




0.0
0.0
0.0
0.0
0.0


Table F.3: Factory calibrated R200 camera intrinsics for the camera used

F.2.3 Distortion
The Modified Brown-Conrady Distortion model [23], is a combined radial and tangential dis-
tortion model which has been used to model the distortion on the RGB image. Unfortunately,
these parameters can only be used one-way distortion for applying distortion to an undistorted
image. This means that only points in the world can be projected onto the image plane using
the intrinsics, whereafter the distortion model can be applied to yield a distorted image similar
to the captured RGB image.

Applying the Modified Brown-Conrady Distortion model to an undistorted pixel location, (xu, yu),
to get a corresponding distorted pixel location, (xd, yd), is shown in (F.3) to (F.9).

u′ = xu − x0
ax

(F.3)

v′ = yu − y0
ay

(F.4)

r2 = u′
2 + v′

2 (F.5)

x′ =
(
1 + k1r

2 + k2r
4 + k3r

6
)
u′ + 2t1u′v′ + t2

(
r2 + 2u′2

)
(F.6)

y′ =
(
1 + k1r

2 + k2r
4 + k3r

6
)
v′ + 2t2u′v′ + t1

(
r2 + 2v′2

)
(F.7)

xd = x′ax + x0 (F.8)
yd = y′ay + y0 (F.9)
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Distortion removal with this type of model is only possible through an iterative process where
the pixels from the distorted image are deprojected assuming an undistorted image and then
projected back to correct the pixel location. This procedure is then repeated several times until
the pixel locations have converged.

F.3 Generating point clouds
To show how the distortion of the RGB image can be handled and combined with the depth image
through an iterative approach, Intel has provided a C and C++ example of how to generate a
coloured point cloud. A coloured point cloud is a collection of several coloured points placed
in a 3-dimensional space, commonly containing thousands of points. The example generates
such a point cloud by grabbing pixel colors from the distorted image and placing them in a 3D
dimensional world relative to the camera frame using the depth values and intrinsics [56].
The algorithmic steps involved in generating the point cloud, which will be used as inspiration
for the manual registration process described in Section F.5.1, are shown in the list below. The
steps in the list are performed in a loop iterating over all pixels within the depth image.

1. Grab the depth value, d, of the current depth pixel, (xd, yd).

2. Use the intrinsics of the depth image, P depth, to deproject the depth pixel into a 3-
dimensional point, Dp, in the depth camera frame.

3. Use the extrinsics between the depth camera frame and the RGB camera frame to translate
the point into the RGB camera frame, Cp.

4. Project this point, Cp, onto the image plane of the RGB image by using the intrinsics of
the RGB camera, PRGB resulting. in pixel location (xc, yc).

5. Apply the distortion model to this pixel location, (xc, yc), to determine the distorted pixel
location from which the pixel color can be grabbed.

6. Round the calculated distorted pixel location to get a quantified location and verify that
this location is within the size of the RGB image.

7. Grab the pixel color from the distorted pixel location and apply to the 3-dimensional point
within the RGB frame, PRGB.

8. Go to the next pixel in the depth image and repeat.

An example of a resulting point cloud is shown in Figure F.7.

Figure F.7: Point cloud generated by librealsense library example provided by Intel [57]
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F.4 Interfacing with ROS
Intel provides a C++ library and SDK to communicate, configure and grab images from the Re-
alSense cameras. This library also includes several examples on how to use the built in functions,
eg. aligning images, generating point clouds or doing other image processing on the RGB and
depth images. The Intel Aero drone comes equipped with the Intel Aero compute board running
a Yocto-based distribution of Linux including ROS. ROS includes many pre-developed features,
libraries, algorithms, visualization and debugging tools and Intel has also developed a version
of the librealsense library supported by ROS [58]. To link the library to the standardized ROS
environment, already including a dedicated method to transfer images and configure cameras,
Intel has developed a RealSense camera nodelet. This nodelet is a minimalistic ROS node whose
only task is to read ROS camera configuration messages and pass these on to the librealsense
library and furthermore redirect the incoming image streams from the librealsense library into
the correct and dedicated image transport protocol within ROS [59].

On the Intel Aero drone the RealSense camera nodelet is started by first launching a local
ROScore on the drone and thereafter launching the nodelet by calling:

1 roslaunch realsense_camera r200_nodelet_rgbd.launch

Code snippet F.1: Launching the RealSense nodelet on the drone with default configuration

This will use the default configuration resulting in an RGB image of 640 × 480 pixels and a
depth image of 480× 360. To change this resolution the width and height parameters should
be adjusted within the ’r200_nodelet_rgbd.launch’ launch file located on the drone within the
folder: ’/opt/ros/indigo/share/realsense_camera/launch’.

Having everything related to the R200 camera contained within ROS allows any node developed
with the ROS environment to access the image streams coming from the RGB and depth camera
in an easily accessible manner using the standardized image transfer protocol. It has been decided
that both the controllers and the FastSLAM algorithm should be implemented as part of the ROS
environment as individual ROS nodes. Implementing the whole system as a contained package
within ROS thereby allows all the existing tools within ROS to be used to visualize the image
streams and debug the developed processing, controller and FastSLAM nodes. Furthermore, it
allows all tests to be recorded in a so-called ROSbag [60] for post-visualization or post-analysis.

All tests can thereby be performed separately and the analysis or processing, eg. the FastSLAM
algorithm node, can be run and tuned after recording.

The distributed structure of ROS also allows the image streams to be streamed wirelessly and
visualized on a connected computer. The ’rqt’ toolset is a GUI based plugin set for ROS
including several different visualization tools, including the ’rqt_image_view’ [61] which can be
used to visualize both the RGB and depth image streams. However ’rviz’ can also be used for
visualization, especially point clouds.
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F.5 Image rectification & registration
Except for providing the non-distorted rectified depth image and distorted RGB image the
RealSense camera nodelet also provides a registered depth image and RGB image. A registered
set of images means that all the images have been aligned to the same frame and intrinsics,
thereby sharing both extrinsics and intrinsics allowing them to be overlaid. The RealSense
camera nodelet is hereby doing the iterative distortion removal as explained previously but in an
optimized way as the library has been contained within a ROS nodelet, intended for performance
optimization.

Figure F.8: Overlaid registered RGB and depth images generated by RealSense camera nodelet
are not matching

Unfortunately the provided registered images, both being non-distorted and rectified and sharing
the same intrinsics, do not seem to be registered correctly as seen by Figure F.8. Tests have
shown that the registered depth image generated by the RealSense camera nodelet does not seem
to be registered correctly on to the registered RGB image or vice versa [62].
To handle this issue, the registration of the images has been handled manually by a developed
ROS node taking in the depth image and distorted RGB image. At a bare minimum the
FastSLAM algorithm needs a map or link between RGB pixel points to corresponding depth
points, such that a depth value can be found for detected ArUco marker pixel and that the depth
image intrinsics can be used to deproject that pixel into the camera frame.
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F.5.1 RGB and depth image registration for FastSLAM
Inspired by the example from Intel generating coloured point clouds, as explained in Section F.3,
a 2-dimensional array of 3-dimensional measurement vectors is generated and aligned with the
RGB image. The steps are similar to the steps from Section F.3 except that instead of grabbing
the pixel color to store it as part of the 3-dimensional point, the 2-dimensional pixel location of
the depth pixel is concatenated with the depth value to a 3-dimensional vector, which is stored
in a 2-dimensional array at a location equal to the distorted RGB pixel location. If only the 3rd
component of the measurement vector is used, this also allows a distorted greyscale depth image
to be overlaid the RGB image for easy visualization of the depth measurements.

An example with the RGB and depth image from Figure F.4 and Figure F.5(b) is shown in
Figure F.9.

Figure F.9: Overlaid registered RGB and depth images generated with developed rectification
process

After processing all depth pixels, the result is a 2-dimensional array whose content corresponds
to 3-dimensional measurement vectors for every given pixel location where a depth value has
been available. This 2-dimensional array is aligned with the 2-dimensional RGB image array
which allows the ArUco detector to find markers within the distorted RGB image and thereafter
look up the corresponding 3-dimensional measurement vector to be provided to FastSLAM.
An example of an RGB and depth image with detected ArUco markers, visualized similarly to
Figure F.9 but where the measurement vector has been printed for each detected marker, is
shown in Figure F.10.
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Figure F.10: Measurement vectors printed next to detected ArUco markers within a combined
visualization of the RGB and depth image

To summarize, the pixel location of every detected ArUco marker within the distorted RGB
image is used to lookup within a generated 2-dimensional array of 3-dimensional measurement
vectors, to get the corresponding measurement vector for each detected marker, as long as a
depth value exists at the location.

149 / 172



Chapter F. Intel RealSense R200 camera

150 / 172



G Pin-hole camera model

A camera captures the environment through an optical lens, where a single point of an object in
the environment will enter the lens at different places but all refract into the same point on the
image plane a certain distance, f , behind the lens. The distance which corresponds to all rays
originating from the same object meeting at the same point is defined as the focal length.

Figure G.1: Pin-hole model of a camera with a lens [63]

To simplify the modelling such a camera with an optical lens is usually modelled with the simple
pin-hole camera model. With the pin-hole model only one specific light ray from each point in
the environment will pass through the hole and result in a focused point on the image plane.
As shown in Figure G.1 the light rays are captured by the image plane placed behind the lens,
although flipped both horizontally and vertically. Mathematically this image plane can be moved
in front of the lens such that all light rays passing through the camera origin would be projected
onto this plane, creating the image.

151 / 172



Chapter G. Pin-hole camera model

Figure G.2: Image plane projection using pin-hole model [63]

Notice how the coordinate frame of the image plane is defined as right-handed with the z-axis
pointing in the direction of the viewpoint while the x-axis is positive to the right and y-axis
is positive downwards. When projecting a point in the environment, P = (X,Y, Z), on to the
image plane, the world point coordinates must be defined within this coordinate frame.

Figure G.3: Similar triangles defines the pin-hole model projection - Consider to change the
axis direction such that it matches with the picture above [64]

Using similar triangles, as in Figure G.3, it can be shown that the world point is projected on to
the image plane according to:

x = f
X

Z

y = f
Y

Z

(G.1)

A projection matrix can be defined to describe this projection by using homogeneous coordinates
to both represent the world point and the image plane coordinate. Homogeneous coordinates
contains a scale component which makes them scale invariant. A world point is defined as

P =


X
Y
Z
1

 (G.2)
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and an image plane coordinate is defined as

p =

uv
w

 (G.3)

The projection matrix transforming from a world point into image plane coordinate is then given
by: uv

w

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (G.4)

Notice that the image plane coordinates are given in metres. The image plane coordinates
are transformed into pixel coordinates by applying a scale factor, kx and ky, defined by the
manufacturer of the image sensor used to capture the image. The scale factor are usually
multiplied with the focal length to form the horizontal and vertical scaling, defining how many
pixels a 1 metre object at 1 metre distance will take up in the image.

ax = fkx

ay = fky
(G.5)

The center of the image plane is defined by the point where the optical axis intersects with the
image plane as shown in Figure G.2. However pixel coordinates within an image are indexed
from zero and up, why the first pixel of an image with coordinate (0, 0) is formed in the upper
left corner of the image plane. Thus an image plane offset, x0 and y0, has to be applied. For
cameras where the lens is well-aligned on top of the image sensor the offset would correspond to
half of the image resolution, but for cameras with slight lens offsets the image plane offset would
have to be calibrated.

The full pin-hole camera model projection matrix is finally defined as:u′v′
w′

 =

ax 0 x0 0
0 ay y0 0
0 0 1 0



X
Y
Z
1

 (G.6)

Where:
u′ x-axis pixel coordinate
v′ y-axis pixel coordinate
w′ homogeneous depth

Finally the actual pixel value corresponding to the projected world point is found by converting
the homogeneous pixel coordinate into the actual pixel coordinate:

xc = u′

w′

yc = v′

w′

(G.7)

Both the focal length, coordinate scaling factors and the image center are usually parameters
provided by the manufacturer or parameters which can be calibrated and determined manually.
Altogether these parameters define the intrinsics of a camera.
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H ArUco markers

From the SLAM implementation it arises that some kind of feature extraction is needed such
that it is possible to extract distinct and unique identifiable features from the environment. From
Section 3.3.1 it is known that the FastSLAM algorithm is fed with three dimensional landmarks.
To extract 3D landmarks, an RGB-D camera is used. As introduced in Section 2.3 the kind of
environment in which this project is based on, might be non-stationary. In such environment the
feature extraction can benefit from using fiducial markers placed in the stationary regions of
the given environment. This appendix is meant to introduce the different alternatives of fiducial
markers, to elaborate the decision taken in Section 3.3.1 of using ArUco Markers and finally
develop on how the feature extraction is implemented using these.

H.1 Fiducial markers
A fiducial marker is an element present in the field of view of an imaging system which al-
lows to measure something in the real world trough the image obtained. Fiducial markers
are used in many different fields, they can be used in metrology as a scaling tool, they can be
used to improve Printed Circuit Boards (PCB) manufacturing or in AR among other applications.

Each application has its own kind of fiducial marker. The fiducial marker used for feature
extraction must fulfil, at least, the requirements listed below:

• The marker has to be detectable and uniquely identifiable using an RGB-D camera.

• The marker needs to be scale invariant such that it can be identified at different distances.

• The marker needs to be rotation invariant such that can be identified at any rotation of it.

Because it is not the purpose of this project to develop specific markers for the feature extraction
process it is reasonable to investigate the available markers used in AR and choose the one that
better fits to the project.

[65] and [66] give an overview of the different available fiducial markers used in AR. If planar
markers are considered, it makes sense to first take into account 2D barcodes because of its broad
usage. A widely used type of 2D barcode is the quick response (QR) code [67]. Within QR codes
also exist other subtypes for different applications. The standard QR code has a squared, shape,
its minimum size is 21x21 modules which is able to store up to 152 bits, an example is shown
in Figure H.1. Furthermore, QR codes are readable from any direction if the position patterns
are used. These are placed in three of the corners of the QR codes. However, QR codes are
intended for encoding of information not for localization. This yields problems when read from
large distance or from views with perspective.
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Figure H.1: A simple representation of the structure of a QR marker. The position detection
allows to determine the rotation of the marker when detected and the rest is encoding data.

Fiducial markers are commonly used in augmented reality (AR) applications, where the re-
quirements just mentioned also have to be fulfilled. One approach to be considered is to use
circular markers as the ones presented in [68], this kind of markers usually only provide one
point. Alternatively, one can use square-based fiducial markers, their main characteristic is that
they can provide four correspondence points, one for each corner. This feature can be useful if
the four correspondence points are taken as different landmarks. A popular system using this
approach is the so-called ARToolkit [69] which is composed of a black border and an inner image
which is then stored in a database. Later approaches based on the same principle are ARTag
[65], ARToolkit Plus[70] and ArUco among others.

Figure H.2: Different types of fiducial markers that can potentially be used for the feature
extraction process

It seems reasonable to choose square-based markers, QR codes are discarded due to its difficulties
to be read from distance and from views with perspective. Among the rest of fiducial markers is
the ArUco markers preferred since an OpenCV library is available. The OpenCV library allows
fast integration with ROS and thus with the FastSLAM implementation.
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H.2 Feature extraction with ArUco markers
The ArUco library presented in [66] propose a squared-based fiducial marker system with binary
codes. Further than providing a method for detecting markers it also provides a method for
generating configurable marker dictionaries with configurable size and number of markers. In
fact, the dictionary is used to identify the markers in the image view.

ArUco markers are composed of a black frame and a binary grid of n× n bits within this frame.
n is used to define the size of the marker, different size options are shown in Figure H.3. Each
row in the binary grid is a binary word, thus, a marker with size n = 4 have four words four bits
long.

The method to generate a dictionary is intended to maximize the Hamming distance between
markers forming the dictionary. The Hamming distance between two markers is defined as the
sum of Hamming distances between each pair of words. The Hamming distance [71] is, given two
strings of the same length, the number of positions where the corresponding symbol is different,
e.g. consider in this case two binary words, 1001 and 1100, its Hamming distance is 2 because
the elements in position 0 and 2 are different from one word to the other. To introduce rotation
invariance, this process is repeated for each 90 degrees rotation of the marker.

Figure H.3: Three different sizes of ArUco markers, from left to right sizes are 5× 5, 6× 6 and
8× 8. It is also indicated the black frame and the binary grid that compose this type of markers.

Within the implementation in OpenCV three options are available to generate markers from a
dictionary. The first and simple option is to use predefined dictionaries with configurable marker
size from n = 4 to n = 7 and configurable dictionary size from 50 to 1000 markers. Another
option is to automatically generate a custom dictionary with customizable marker size and
customizable dictionary size. Last option is to the manually create a dictionary using the class
Dictionary. For the ease of the implementation it is decided to chose a predefined dictionary. It
is recommended to choose small dictionaries and big markers. Thus, the dictionary of 50 markers
is chosen as it is the smallest predefined dictionary available, with markers of size n = 4 for the
ease of the marker’s recognition from long distances. The definition of the used dictionary in the
OPenCV is shown in line 3 of the Code snippet H.1.
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Once the dictionary is set it is possible to proceed with the marker detection process which is
split in two phases:

1. Image process; phase where, from the image given, candidates to be markers are recognized.

2. Identification of valid markers; phase where the detected markers are identified if part of
the generated dictionary or discarded otherwise.

Both phases are encapsulated within one command in the OpenCV, a call example of this
command can be found at line 5 of the code snippet shown in the Code snippet H.1. For that
implementation one have to specify the dictionary containing the used markers. It is also possible
to adjust the detector parameters which allow to tune the detection process, in this case the
default parameters have been used, no further tuning has been done as the results have been
satisfactory.

1 #include <opencv2/aruco.hpp>
2
3 cv::aruco::Dictionary markerDictionary =

cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
4
5 cv::aruco::detectMarkers(RGB_Image, markerDictionary, markerCorners,

markerIds);
6
7 cv::aruco::drawDetectedMarkers(blended, markerCorners, markerIds);

Code snippet H.1: Implementation commands performing the ArUco marker detection
process. A predefined dictionary with size 50 and marker size 4 has been used. The marker
detection is performed with the default parameters and finally the markers are drawn for
visualisation.

The image process defined by the ArUco marker system is developed in [66] and its OpenCV
implementation details are described in [15]. This process is divided in different steps:

1. Image segmentation: it is done using a local adaptive thresholding approach, an example
is shown in Figure H.4(b).

2. Controur extraction: it is desired to detect candidates to markers, for that, a contour
extraction is done, its result is shown in Figure H.4(c) where it can be seen that most of
the contours detected are irrelevant, for that, first a size filter is applied, in the OpenCV
implementation a minimum and maximum perimeter of the marker can be specified for
that filtering, the default values are 0.03 as the minimum and 4.0 as the maximum.

3. Polygonal approximation: It is performed such that the polygons that are not estimated
as 4-vertex polygons are discarded, the result then is shown in Figure H.4(d).

4. Code Extraction: once the perimeters have been detected, see Figure H.4(e). The
obtained image without perspective is then thresholded and the resulting binary image is
divided into a regular grid where each element is set to zero or one depending on the pixel
values within each element, this can be seen in Figure H.4(e). Realize that in Figure H.4(d)
some error contours are still detected, now that the binary grid of each element is known,
most of these error contours can be discarded if they do not present a grid which border is
all zeros.

158 / 172



H.2. Feature extraction with ArUco markers

Figure H.4: From [66] it describes the different steps in the image processing where: (a) shows
the original input image, (b) shows the image segmentation after an adaptive thresholding,
(c) shows the result of the contour extraction, (d) shows the result of the 4-vertex polygonal
approximation, (e) shows the result of the projection removal divided into a regular grid and (d)
shows the corresponding marker code extraction.
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At this point the image process phase is finished and the marker identification proceeds. Whenever
a candidate marker code is obtained, four different identifiers are computed, one for each rota-
tion. Just that one of these is found in the set dictionary it is directly considered as a valid marker.

When the marker detection process is finished, it outputs the pixel coordinates of the four
corners of the found marker. For visualization purposes it is possible to draw the contour of
the found markers in the input image using the OpenCV implementation, line 7 in the Code
snippet H.1 shows an example of the command call used, the result of this visualisation is shown
in Figure H.5.

Figure H.5: Implementation of the ArUco markers detection is done in ROS. ArUco markers
are printed and placed in the walls. The image shows the detection and identification of some of
the markers placed in the laboratory. The implementation streams the marker identifier and its
pixel position for visualisation purposes.

ArUco markers are printed in paper of size DIN-A4 and placed on the walls of the laboratory.
The size of each printed marker is 17.5 × 17.5cm. Result of this implementation is shown in
Figure H.5.
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Robotics Operating System (ROS) is considered as a flexible framework that aims to simplify
the writing of software for robots. It is defined in [72] as a meta-operating system, called so
because it provides the services expected from an operating system such as hardware abstrac-
tion, low-level device control, implementation of commonly-used functionality, message-passing
between processes, and package management, but still need another operating system to work.

The implementation of this project in the given platform has been done using ROS. This appendix
is intended to give an overview of ROS and how it has been used in this particular implementation.

I.1 Introduction to ROS
ROS computational graph is a peer-to-peer network of different processes that are running
simultaneously. It is basically composed of a Master and different nodes, the master works as
a lookup for the rest of the computational graph while the nodes are the different processes
performing computation which can interact by communicating with each other by passing
messages. A message is nothing else than a data structure, this data structure varies over
different kind and can include different standard primitives such as integers, floating point and
boolean among others, the structure can be defined for a particular application. ROS includes
different styles of communication, it includes synchronous communication which is done over
services and also includes asynchronous communication of data, which is done through topics.
These are some of the basic computational graph concepts of ROS and will be further explained
within this section.

Master
The ROS master is meant to provide naming and registration services for the nodes in the ROS
system. The ROS master keeps track of the different nodes existing in the computational graph
and the topics that they subscribe/publish as well as services. The ROS master is used by the
nodes as a lookup so they can locate the different nodes in the computational graph. In other
words, it enables the communication between nodes. To be able to run a ROS system, a ROS
master is always needed.

Launching a ROS master can be done by running the command-line tool roscore in the bash
shell, which will also load other essential components for the ROS system.

Nodes
Nodes are the processes performing computation within the computational graph. Nodes com-
municate with each other through topics and services. A robot control system can imply several
nodes, for example, in this project one node is the one running the controllers, another node is run-
ning the EKF, another one is running the camera and so on. Figure I.1, Figure I.2 and Figure I.3
shows a representation of the computational graph used in this project, including the active nodes.
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ROS nodes are written using a ROS client library, such as roscpp and rospy, a C++ and a python
implementations of ROS respectively. Notice that it is possible to use roscpp to write one node
and rospy to write another node within the same computational graph.

ROS provides some command-line tools under the call of rosnode, it can provide information
about the nodes, for example, rosnode list generates a list of active nodes and rosnode info
provides information of a specified node.

Messages
Nodes communicate with each other by exchanging messages. A message is a data structure
comprised of standard primitives such as integer, boolean, floating point among others. These
data structures can be specified using .msg files.
ROS provides some command-line tools under the call of rosmsg, some of the available commands
are rosmsg show which will display the fields of a particular ROS message type or rosmsg list
which displays a list of all messages.

Topics
Topics are named buses and are used in ROS systems for asynchronous communication between
ROS nodes. A node can send out a message by publishing it to a given topic. When a node is
publishing in a topic it is registered by the master, thus other nodes can see that this topic is being
published by this node and read the messages in the topic by subscribing to it. There is no limit
of nodes publishing or subscribing to a topic, thus there may be multiple concurrent publishers
and subscribers for a single topic. Moreover, a single node can publish and/or subscribe to
multiple topics.

ROS provides some command-line tools under the call of rostopic, some of the available
commands are rostopic list which will display a list of the active topics and rostopic type
which displays the topic type of a topic. To display the messages published in a particular topic
the command rostopic echo can be used. It is also possible to publish into a topic from the
command-line using rostopic pub.

Services
Services are used for synchronous communication between nodes. Compared to the publish/sub-
scribe model, services follow a request/reply model. A service is defined by two messages, one
doing the request and the other one the reply. Services are specified with .srv files, which are
compiled into source code by a ROS client library.

ROS provides some command-line tools under the call of rosservice, some of the available
commands are rosservice list which displays a list of active services, rosservice type which
displays the type of a particular service or rosservice call which one can use to call a particular
service with specified arguments.

I.2 Debugging tools
To ease the writing of code for robot control systems, different debugging tools are available
within the ROS environments to help the user. Some of these tools that have been used in this
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project are rqt, rviz and rosbag. This section will give a short overview of these tools and explain
how they have been used in this project.

rqt
rqt is a software framework of ROS that implements various GUI tools in the form of plugins.
Among several of the available tools within rqt, mainly 4 of them have been used in the project.

One of these tools is ros_graph, a tool used to visualise the computational graph. Elements
such as nodes and topics are shown. The two computational graphs generated by ros_graph is
seen in Figure I.1 and Figure I.3. The ellipsoids represent the nodes and the rectangular boxes
represent topics. If an arrow is going out of a node it means that the node is publishing into one
topic, otherwise, if an arrow points into the node, it means that this node is subscribing to a topic.

It is seen in Figure I.1 that the ROS system running the controllers involve three nodes, one
node is providing the interface with the VICON system and it is publishing the drone pose
generated from the VICON system. Another node is running the controllers and the third one is
the Mavros node which interfaces to the PX4 controller.

Figure I.1: Computational graph generated with ros_graph of the ROS system including the
controllers

Two different scenarios are given in the ROS system running FastSLAM, one scenario when GOT
measurements are provided, in this project emulated by VICON measurments, and a scenario
when GOT measurements are not provided. Each scenario has its own computational graph
which are respectively shown in Figure I.2 and Figure I.3.

Figure I.2: Computational graph representation generated with ros_graph of the ROS system
running FastSLAM with VICON measurements

The computational graph of the scenario where VICON measurements are available, shown in
Figure I.2, is composed of five nodes. As it is for the ROS system running the controllers, there
is one node for the VICON system and one for Mavros. Furthermore one node is running the
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FastSLAM algorithm, which is also doing the image processing. That is why the FastSLAM
node is subscribing to the RGB and depth topics published by the camera node. Notice that the
fifth node is just running a camera driver.

Figure I.3: Computational graph representation generated with ros_graph of the ROS system
running FastSLAM without VICON measurements

The computational graph of the scenario when VICON measurements are not available, shown
in Figure I.2, is composed of three nodes. Similarly to the ROS system running FastSLAM with
GOT measurements, two nodes are running the camera while FastSLAM is running in one other
node. It is evident that the node running VICON is not active and because there is no direct
link between FastSLAM and the PX4 flight controller, Mavros is not active neither.
Moreover rqt has been used for image view visualisation, i.e. a tool to visualise the published
image views such as the RGB image or the depth published by the camera node. rqt has also
been used to setting up the camera parameters and for rosbag visualisation.

rviz
rviz is a 3D visualization environment which allows to see what the robot is seeing whether
using cameras, laser scanners or joint encoders. It can also be used for point cloud visualisation
from the RGB-D camera. It helps the user debugging its implementation and see if the RGB-D
camera is well set-up.

rosbags
rosbags are files in ROS, intended to store ROS message data. This data can then be processed,
analysed and visualized later. It provides command-line tools such as rosbag record, which
subscribes to topics and writes to a bag file with the contents of all messages that have been
published in the topic. Another command-line tool is rosbag play, which enables to reproduce
bag files by reading the content of one or more bag files such that the messages stored in the bag
file are published in the respective topics.

rosbags have been used in the project, mainly to debug the FastSLAM implementation. To do
that flights with the drone have been recorded with rosbags, including VICON measurements
and video recorded by the RGB-D camera among other topics.
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Simulation has been used for testing along the development of the project, i.e. test of controllers.
For that purpose it has been decided to use the Software-in-the-Loop simulator (SITL) provided
by the PX4 autopilot software. This allows to simulate the PX4 flight controller together with the
developed software. To test the ROS implementation, SITL is available as a plugin for Gazebo.
Thereby making it possible to take into account the interface between the ROS implementation
and the PX4 flight controller through MAVROS and Mavlink. The connection between MAVROS
and Mavlink is done in this case through UDP. Moreover, the use of Gazebo makes it possible to
include sensors such as an IMU or an RGB-D sensor. A representation of how the implementation
looks when using simulation is shown in Figure J.1.

Figure J.1: Implementation overview using SITL and Gazebo interfaced with ROS [73]

J.1 Gazebo
Gazebo is a physics simulator known for its usage in robotics simulation due to its relation with
ROS. This section is intended to give a brief introduction to the different elements forming the
simulator and how it has been defined in the present project.

As stated in Chapter 5, the version of ROS used in this project is Indigo due to the installation
already existing in the IntelR© RTF drone. The Gazebo version used, is version seven since the
PX4 SITL plugin is made for Gazebo version six or seven. Version two of Gazebo is installed,
along this ROS indigo installation. Hence, the Gazebo version two has to be remove, and Gazebo
version seven (or six) has to be installed from source instead.
A Gazebo simulation is composed of multiple components. Three of these components is described
in this section. These components are:

• World files

• Model files

• Plugins
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J.1.1 World files
World description files are used to define the simulation environment. These can include
descriptions of the lighting, the ground and other static elements, like buildings obstacles and
sensors. Furthermore, a world file describes how these model files are placed in simulation and
how they interact with each other. World files are formatted using Simulation Description Format
(SDF) [74] and typically have a .world extension.
Two different worlds are considered in this project, both of them inspired from the empty.world
provided by the PX4 SITL. The first world used is directly the empty.world file which is composed
of an asphalt ground and sun light. The ground contains a description of its appearance and
collision properties. The collision properties of the ground are important since they define a plane
at which the drone can rest without free falling. This world has been used to test implementation
of the Z controller, the EKF and the X-Y controller. The visualisation outcome using the Gazebo
graphic user interface (GUI) is shown in Figure J.2.

Figure J.2: empty.world file visualisation in Gazebo GUI including sun light and ground

The second world file used is the same empty world but including a representation of a square
room with ArUco markers placed on the walls. This world is intended to test implementation of
the FastSLAM algorithm and the full implementation. The visualisation outcome in Gazebo
GUI is shown in Figure J.3.

(a) (b)

Figure J.3: Two different views of the world file visualisation in Gazebo GUI where it is included
a square room with ArUco markers.
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J.1.2 Model files
Model files are used to describe the individual elements used in the simulation.

Gazebo uses SDF files for the description of model files. However, they can also be written in
Universal Robot Description Format (URDF) but Gazebo will first convert those to SDF before
it is used by Gazebo, this can be done because URDF is a useful and standardized format for
describing robot models in ROS.

Model files describes any kind of element that has to be included in simulation. One good
property of those is that they are stackable, an example would be the drone shown in Fig-
ure J.2 and Figure J.3 which includes four motors, here only one model file describing one
motor is needed and it can be included four times in the model file of the drone. This prop-
erty allows to reuse model files, e.g. this model file describing a motor can be used in other
drones. In fact, a world file is nothing else than a collection of several model files, which can
be imported or directly defined in the world file. For example, in the present implementation,
the drone, the ground, the sun and the square room are described in different model files and
then included into the world file. Each ArUco marker is described directly in the world file instead.

The SITL plugin is providing a model of the Iris drone, a similar drone to the IntelR© RTF drone.
Due to time constraints it is decided to use the Iris drone in simulation rather than making a
model of the IntelR© RTF drone. Although this Iris drone model does not include nor an RGB
camera nor a depth sensor, it is possible to add an RGB-D camera with the proper plugin to
emulate the IntelR© Realsense camera mounted in the IntelR© RTF drone.

J.1.3 Plugins
Plugins are a simple mechanism to interface with the Gazebo simulation. Some plugins are
already given with the Gazebo installation, but it is also possible to develop new plugins to
interface with Gazebo in a particular way. The different plugins can be classified as:

• World

• Model

• Sensor

• System

• Visual

• GUI

The 3DRR© Iris drone Model includes plugins such as the motor plugin, the IMU plugin and a
plugin for mavlink among others. On top of those, it has been necessary to include a plugin
for the RGB-D camera. Among the plugins included within the Gazebo installation, there is
a plugin that emulates a Kinect camera [75], an active RGB-D sensor similar to the IntelR©

Realsense camera. For the ease of the implementation it is decided to use this Kinect plugin
instead of making a new one for the IntelR© Realsense camera. This may differ slightly but is not
expected to affect the controllers nor the FastSLAM algorithm implementation. It can be seen in
Figure J.4 how the camera view is seen in simulation, together with the implementation of the
ArUco markers identification.
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(a) (b)

Figure J.4: Image view in simulation using a plugin for a Kinect camera, an RGB-D camera
similar to the IntelR© Realsense camera. Figure J.4(a) shows the Gazebo GUI visualisation and
Figure J.4(b) shows the image view show the ArUco marker identification and it displays the
respective identifier with its measurement vector.

J.2 Software-in-the-Loop
Software-in-the-Loop is a common choice for testing implementation of software in simulation
such that the hardware is not compromised. The hardware involved in this project is a drone,
which is a rather expensive piece of hardware and implementation test could easily imply crashing
it. Hence, it is deemed necessary to use SITL. For that, a SITL provided by PX4 is used, this
makes it possible to use the PX4 flight controller together with simulated sensor data generated
by the flight simulator, in this case Gazebo.
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This appendix is intended as a guide which explains the installation steps involved in getting the
drone up and running in simulation. The guide is tested to work on Ubuntu 14.04 LTS.

K.1 Prerequisites
A few programs need to be installed before the guides can be followed. First program is git which
is installed with the following command in Code snippet K.1.

1 sudo apt-get install git

Code snippet K.1: Command to install git from a terminal.

Furthermore a few build tools need to be installed in order to compile the PX4 autopilot software
in the loop simulation. This is obtained with the following commands in Code snippet K.2

1 sudo add-apt-repository ppa:george-edison55/cmake-3.x -y
2 sudo apt-get update
3 sudo apt-get install python-argparse git-core wget zip python-empy

qtcreator cmake build-essential genromfs -y
4 sudo apt-get install ant protobuf-compiler libeigen3-dev libopencv-dev

clang-3.5 lldb-3.5 python-jinja2 -y

Code snippet K.2: Commands to install prerequisite the build tools necessary to compile
PX4 SITL.

K.2 ROS Indigo
ROS Indigo can be installed from a Debian package. This is achieved by using the commands in
Code snippet K.3

1 sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release
-sc) main" > /etc/apt/sources.list.d/ros-latest.list’

2 sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-key
421C365BD9FF1F717815A3895523BAEEB01FA116

3 sudo apt-get update
4 sudo apt-get install ros-indigo-desktop-full
5 sudo rosdep init
6 rosdep update

Code snippet K.3: Commands to install ROS Indigo from a Debian package

A few environment variables have to be set in the shell environment before the ROS installation
can be used. These environment variables can be sourced with the following command in Code
snippet K.4
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1 source /opt/ros/indigo/setup.bash

Code snippet K.4: Command to set the environment variables in the shell.

The environment variables have to be sourced in every terminal session. Run the following
command in Code snippet K.5 to source them automatically in every new terminal session.

1 echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

Code snippet K.5: Command to set the environment variables for every new shell.

Rosinstall has to be installed also. It is a tool for downloading many source trees for ROS
packages with one command. Rosinstall will be used throughout the guide. Rosinstall is installed
with the following command in Code snippet K.6.

1 sudo apt-get install python-rosinstall

Code snippet K.6: Command to install rosisnstall.

K.3 Catkin tools
Catkin tools is a collection of commands which is useful for working with and compiling source
code within ROS workspaces. These tools are used throughout the guide and they are installed
from a debian package with the following commands in Code snippet K.7.

1 sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu ‘lsb_release -sc‘
main" > /etc/apt/sources.list.d/ros-latest.list’

2 wget http://packages.ros.org/ros.key -O - | sudo apt-key add -
3 sudo apt-get install python-catkin-tools

Code snippet K.7: Commands to install catkin tools.

K.4 Gazebo 7
Gazebo 2 is installed along the installation of ROS Indigo. But the software in the loop simulation
of the PX4 autopilot is made for Gazebo 7 and not Gazebo 2. Gazebo 7 should therefore be
installed also with the following commands in Code snippet K.8.
Gazebo 7 can be installed from a Debian package. With the following commands.

1 sudo sh -c ’echo "deb
http://packages.osrfoundation.org/gazebo/ubuntu-stable ‘lsb_release
-cs‘ main" > /etc/apt/sources.list.d/gazebo-stable.list’

2 wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
3 sudo apt-get update
4 sudo apt-get install ros-indigo-gazebo7-ros-pkgs

ros-indigo-gazebo7-ros-control gazebo7 libgazebo7-dev

Code snippet K.8: Commands to install Gazebo 7 from a Debian package.
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K.5 MAVROS
MAVROS is a ROS node. In order to get the latest version of MAVROS it has to be compiled
from source code and installed within a ROS workspace. To install MAVROS a ROS workspace
should be created. In this guide the workspace will be installed in the home folder. The ROS
workspace is created with the following commands in Code snippet K.9.
1 cd ~/
2 mkdir catkin_ws
3 cd catkin_ws
4 mkdir src
5 cd src
6 catkin_init_workspace

Code snippet K.9: Commands to set-up a ROS workspace

In order to complete the installation of MAVROS a few python tools need to be installed. This
is done with the commands in Code snippet K.10
1 sudo apt-get install python-wstool python-rosinstall-generator

python-catkin-tools python-pip
2 sudo pip install future

Code snippet K.10: Commands to install necessary python tools for the MAVROS
installation

Finally, proceed with the installation of MAVROS within the ROS workspace, following the
commands in Code snippet K.11
1 wstool init ~/catkin_ws/src
2 rosinstall_generator --upstream mavros --rosdistro kinetic | tee -a

/tmp/mavros.rosinstall
3 rosinstall_generator --rosdistro kinetic mavlink | tee

/tmp/mavros.rosinstall
4 cd ~/catkin_ws
5 wstool merge -t src /tmp/mavros.rosinstallcd
6 wstool update -t src
7 rosdep install --from-paths src --ignore-src --rosdistro indigo -y

Code snippet K.11: Commands to install MAVROS within a ROS workspace.

K.6 Software in the loop simulation
The software in the loop simulation of PX4 autopilot should be installed from source within the
ROS workspace created during the MAVROS installation. This is obtained with the following
commands in Code snippet K.12.
1 cd ~/catkin_ws/src
2 git clone https://github.com/PX4/Firmware.git
3 cd Firmware
4 git submodule update --init --recursive
5 make posix_sitl_default gazebo

Code snippet K.12: Commands to install the Software in the loop simulation from source.

171 / 172



Chapter K. Getting started guide

K.7 Installation of the project code
The source code developed by the project group should be installed within the same ROS
workspace as well. This is done with following steps in Code snippet K.13

1 cd ~/catkin_ws/src
2 git clone https://github.com/davidromanos/intel_aero_rtf_gr871.git
3 cd ~/catkin_ws
4 catkin build

Code snippet K.13: Commands to clone the repository containing the project code and
and build it within the ROS workspace.
K.8 Execution of the programs
To start the software in the loop simulation in Gazebo, open a terminal and source the environment
variables and source the necessary set-up files with the following commands in Code snippet K.14.

1 cd ~/catkin_ws
2 source devel/setup.bash
3 source src/Firmware/Tools/setup_gazebo.bash $(pwd)/src/Firmware

$(pwd)/src/Firmware/build_posix_sitl_default
4 export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd)/src/Firmware
5 export

ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd)/src/Firmware/Tools/sitl_gazebo

Code snippet K.14: Commands to set-up the proper ROS environment before launching
the simulation.

Once the ROS environment is set, in the same terminal the software in the loop simulation is
launched in Gazebo together with MAVROS with the following command in Code snippet K.15

1 roslaunch px4 mavros_posix_sitl.launch

Code snippet K.15: Command to launch the software in the loop simulation in Gazebo
together with MAVROS.

In the simulated environment is GOT or Vicon motion capture system implemented with a node
called true position. This node has to be started before the controller node is started. The
true position node is started in a new terminal session with the following commands in Code
snippet K.16.

1 cd ~/catkin_ws
2 source devel/setup.bash
3 rosrun intel_aero_rtf_gr871 true_position

Code snippet K.16: Command to initialize the node running the motion capture system.

The controller node running the Extended Kalman filter and the controllers is started in a new
terminal sessions with the following commands in Code snippet K.17.

1 cd ~/catkin_ws
2 source devel/setup.bash
3 rosrun intel_aero_rtf_gr871 controller

Code snippet K.17: Commands to initialize the node running the Extended Kalman filter
and controllers
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